机器学习基石 5 Training versus Testing

Recap and Preview

回顾一下机器学习的流程图:

机器学习可以理解为寻找到 \(g\),使得 \(g \approx f\),也就是 \(E_{out}(g) \approx 0\) 的过程。为了完成这件事情,有两个关键的步骤,一个是保证 \(E_{out}(g) \approx E_{in}(g)\),另一个是保证 \(E_{in}(g) \approx 0\) (这两件事情通常由 “训练” 以及 “测试” 这两个过程来完成),当这两件事情都得到保证之后,我们就可以得到 \(E_{out}(g) \approx 0\),于是完成了学习。

\(M\)(hypothesis 的数目)的取值对这两个问题有影响:

  1. \(M\) 太小,能保证 \(E_{out}(g) \approx E_{in}(g)\),但是不能保证 \(E_{in}(g) \approx 0\);
  2. \(M\) 太大,能保证 \(E_{in}(g) \approx 0\),但是不能保证 \(E_{out}(g) \approx E_{in}(g)\)。

下面将尝试解决 \(M\) 较大时,\(E_{out}(g) \approx E_{in}(g)\) 的问题。

Effective Number of Lines

对于这个式子,\(M = \infty\) 时,右侧的值很大,\(E_{out}(g) \approx E_{in}(g)\) 不能保证,于是我们尝试用一个合适的数 \(m_H\) 代替式子中的 \(M\),使无穷变成有限。

第一个式子中的 \(M\) 来源于 “Union Bound”

其中 \(P[B_M]\) 表示的是第 \(M\) 个假设函数 \(h_M\) 在数据集上发生坏事情(即存在 BAD DATA,\(E_{out}(h_M) \neq E_{in}(h_M)\))的概率。

然而当 \(M\) 很大时,假设集中存在许多相似的假设函数 \(h\),它们发生坏事情的概率和情形都很接近,这样使用 “Union Bound” 来计算整个假设集发生坏事情的概率,便存在许多重复的地方,于是算出来的概率会比实际的高很多(over-estimating)。

我们以二元分类来阐述怎么解决这个问题:我们根据分类结果,对 \(h\) 进行分类。

样本点大小 \(N\) 假设集 \(H\) 等价类(考虑最多的情况)
1 2 类:\(\{o\}\)、\(\{x\}\)
2 4 类:\(\{oo\}\)、\(\{ox\}\)、\(\{xo\}\)、\(\{xx\}\)
... ...
N \(2^{N} 类\)

对于一个大小为 \(N\) 的数据集,任意一个假设函数 \(h\) 都属于上述 \(2^N\) 个等价类之间的一个,因此我们可以用 \(2^N\) 来代替原不等式中的 \(M\)。

Effective Number of Hypotheses

我们把上面提到的等价类的概念起一个名字叫做 Dichotomy。

具体的 Dichotomy 的 size 与这 \(N\) 个数据的具体取值有关(但是不会大于 \(2^N\)),为方便讨论我们取最大那个 size 来分析,取名为 growth function,记作 \(m_H(N)\)。

接下来我们需要计算 \(m_H(N)\),首先考虑几种不同的模型的 \(m_H(N)\)

  • Positive Rays:\(m_H(N) = N + 1\)

  • Positive Intervals:\(m_H(N) = {{N+1} \choose 2} + 1\)

  • Convex Sets:\(m_H(N) = 2^N\)

总结如下:

Break Point

我们希望 \(m_H(N)\) 是多项式形式而不是指数形式的,这样才能保证 \(E_{out}(g) \approx E_{in}(g)\):

我们引入一个概念叫 break point,定义如下所示

于是上面所提到的四种模型的 break point 如下所示:

我们猜测 \(m_H(N)\) 与 break point 有下面的关系:

  • no break point:\(m_H(N) = 2^N\)
  • break point \(k\):\(m_H(N) = O(N^{k-1})\)

如果猜测成立,那么在有 break point 的情况下,\(m_H(N)\) 便是一个多项式形式,这样就能保证 \(E_{out}(g) \approx E_{in}(g)\) 了。

机器学习基石 5 Training versus Testing的更多相关文章

  1. Coursera台大机器学习课程笔记4 -- Training versus Testing

     这节的主题感觉和training,testing关系不是很大,其根本线索在于铺垫并求解一个问题:    为什么算法PLA可以正确的work?因为前面的知识告诉我们,只有当假设的个数有限的时候,我们才 ...

  2. 【Training versus Testing】林轩田机器学习基石

    接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...

  3. 林轩田机器学习基石课程学习笔记5 — Training versus Testing

    上节课,我们主要介绍了机器学习的可行性.首先,由NFL定理可知,机器学习貌似是不可行的.但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的.本节 ...

  4. 机器学习基石:05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  5. 机器学习基石笔记:05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  6. 05 Training versus Testing

    train:A根据给定训练集D在H中选出g,使得Ein(g)约等于0: test:g在整个输入空间X上的表现要约等于在训练集D上的表现,使得Eout(g)约等于Ein(g). 如果|H|小,更易保证t ...

  7. 理解机器为什么可以学习(二)---Training versus Testing

    前边由Hoeffding出发讨论了为什么机器可以学习,主要就是在N很大的时候Ein PAC Eout,选择较小的Ein,这样的Eout也较小,但是当时还有一个问题没有解决,就是当时的假设的h的集合是个 ...

  8. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  9. 台大《机器学习基石》课程感受和总结---Part 2 (转)

    转自:http://blog.sina.com.cn/s/blog_641289eb0101e2ld.html Part 2总结一下一个粗略的建模过程: 首先,弄清楚问题是什么,能不能用机器学习的思路 ...

随机推荐

  1. Oracle基础学习(二)v$session中Command的数字含义

    v$session中Command的数字含义. 1 CREATE TABLE 2 INSERT 3 SELECT 4 CREATE CLUSTER 5 ALTER CLUSTER 6 UPDATE 7 ...

  2. 使用Typescript来写javascript

    使用Typescript来写javascript 前几天尝试使用haxejs来写javascript,以获得静态类型带来的益处.虽然成功了,但很快发现将它与angularjs一起使用,有一些不太顺畅的 ...

  3. PHP 7.1 新特性

    PHP 7.1 新特性 1.密集阵算法 2.php int64位支持(2GB的字符串和2GB的文件的上传) 3.$a<=>$b  操作符,排序时有用 4.标量的支持,如果声明int传入st ...

  4. 2017<java技术>预备作业计科冀浩然

    1.阅读邹欣老师的博客,谈谈你期望的师生关系是什么样的? 我期望的师生关系是相互融洽的,老师能够在上课的时候尽量多的教我们专业知识,可以尽量多和我们进行互动,课下能和我们如同朋友一般就可以了. 2.你 ...

  5. C#中的foreach语句与枚举器接口(IEnumerator)及其泛型 相关问题

    这个问题从<C#高级编程>数组一节中的foreach语句(6.7.2)发现的. 因为示例代码与之前的章节连贯,所以我修改了一下,把自定义类型改为了int int[] bs = { 2, 3 ...

  6. Javascript 闭包与高阶函数 ( 一 )

    上个月,淡丶无欲 让我写一期关于 闭包 的随笔,其实惭愧,我对闭包也是略知一二 ,不能给出一个很好的解释,担心自己讲不出个所以然来. 所以带着学习的目的来写一写,如有错误,忘不吝赐教 . 为什么要有闭 ...

  7. [Hive] - Hive参数含义详解

    hive中参数分为三类,第一种system环境变量信息,是系统环境变量信息:第二种是env环境变量信息,是当前用户环境变量信息:第三种是hive参数变量信息,是由hive-site.xml文件定义的以 ...

  8. Java之路——敬JAVA初学者(作者:MoMo)

    作为一名大四的毕业生,大学三年过,有得有失.作为一个喜欢编程,喜欢JAVA的人,自学其实是一件美事,很有意思的事.要是能再找个女朋友一起学.嘿嘿,就不枉在大学走了一遭啊!    要离开学校了,还是想留 ...

  9. MASM32使用教程

    代码如果你在用汇编语言来开发windows下的程序的话,MASM32是很好的选择. (Masm32下载地址请用google搜索罢.) 工欲善其事,必先利其器. 本文主要针对masm32 v8来说明三点 ...

  10. 2月22日 《从Paxos到Zookeeper 分布式一致性原理与实践》读后感

    zk的特点: 分布式一致性的解决方案,包括:顺序一致性,原子性,单一视图,可靠性,实时性 zk的基本概念: 集群角色:not Master/Slave,is Leader/Follower/Obser ...