Catalan数——卡特兰数
一、Catalan数的定义
令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n>=2)
该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数)
二、问题描述
12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种?
问题分析:
我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排.
用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案.
比如000000111111就对应着
第一排:0 1 2 3 4 5
第二排:6 7 8 9 10 11
010101010101就对应着
第一排:0 2 4 6 8 10
第二排:1 3 5 7 9 11
问题转换为,这样的满足条件的01序列有多少个。
观察规律我们发现1的出现前边必须有一个相应的0对应,所以从左到右的所有序列中0的个数要一直大于1的个数。那这种数列有多少种排列方式呢?
那么我们从左往右扫描,第一次出现1的个数等于0的个数是第k位,那么在此之前,0的个数是大于1的个数的。在此之后,0的个数也是大于1的个数的。所以第k位0和1的个数第一次相等的排列有他们这两部分的个数相称的结果。那么所有的k有多少种,则把它们相加起来,就是最后的排列数。这是一个递归的问题。
即 h(n)=h(0)×h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0)
如果把0看成入栈操作,1看成出栈操作,就是说给定6个元素,合法的入栈出栈序列有多少个。
在<<计算机程序设计艺术>>,第三版,Donald E.Knuth著,苏运霖译,第一卷,508页,给出了证明:
问题大意是用S表示入栈,X表示出栈,那么合法的序列有多少个(S的个数为n)
显然有c(2n, n)个含S,X各n个的序列,剩下的是计算不允许的序列数(它包含正确个数的S和X,但是违背其它条件)。
在任何不允许的序列中,定出使得X的个数超过S的个数的第一个X的位置。然后在导致并包括这个X的部分序列中,以S代替所有的X并以X代表所有的S。结果是一个有(n+1)个S和(n-1)个X的序列。反过来,对一垢一种类型的每个序列,我们都能逆转这个过程,而且找出导致它的前一种类型的不允许序列。例如XXSXSSSXXSSS必然来自SSXSXXXXXSSS。这个对应说明,不允许的序列的个数是c(2n, n-1),因此h(n )= c(2n, n) - c(2n, n-1)。
三、递推公式
1、给定n个数,有多少种出栈序列?
( 问题的形象描述:
饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时,姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的方式?
一个有n个1和n个-1组成的字串,且前k个数的和均不小于0,那这种字串的总数为多少?
P=A1A2A3……An,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?)
2、n个节点的二叉树有多少种构型?
3、有n+1个叶子的满二叉树的个数?

4、在n*n的格子中,只在下三角行走,每次横或竖走一格,有多少中走法?

5、将一个凸n+2边形区域分成三角形区域的方法数?

6、在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

7、n个长方形填充一个高度为n的阶梯状图形的方法个数?

上面一些问题有些是同构的,但有些却实在看不出联系来,他们的答案却都为卡特兰数。
Catalan数——卡特兰数的更多相关文章
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- (转载)Catalan数——卡特兰数
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- Catalan Number 卡特兰数
内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...
- 浅谈 Catalan number——卡特兰数
一.定义: 卡特兰数是一组满足下面递推关系的数列: 二.变形: 首先,设h(n)为Catalan数的第n+1项,令h(0)=1,h(1)=1,Catalan数满足递推式: h(n)= h(0)*h(n ...
- 洛谷 p1044 栈 【Catalan(卡特兰数)】【经典题】
题目链接:https://www.luogu.org/problemnew/show/P1044 转载于:https://www.luogu.org/blog/QiXingZhi/solution-p ...
- 转载 - Catalan数(卡特兰数)
出处:http://blog.sina.com.cn/s/blog_6aefe4250101asv5.html 什么是Catalan数 说到Catalan数,就不得不提及Catalan序列,Catal ...
- 卡特兰数 catalan number
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...
- HDU 1023 Traning Problem (2) 高精度卡特兰数
Train Problem II Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Sub ...
- HDU 1023 Train Problem II (大数卡特兰数)
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
随机推荐
- 小白也能看懂的插件化DroidPlugin原理(二)-- 反射机制和Hook入门
前言:在上一篇博文<小白也能看懂的插件化DroidPlugin原理(一)-- 动态代理>中详细介绍了 DroidPlugin 原理中涉及到的动态代理模式,看完上篇博文后你就会发现原来动态代 ...
- iOS开发实战-上架AppStore 通过内购和广告获得收益
写在前面 由于一些原因需要离职,准备重回大上海 忽然发现手头上也没什么独立App,那就随便写个放到AppStore上吧,凑个数吧.哈哈哈. 这个App是无聊找配色的时候看到的一套图 正好春节在家没什么 ...
- [补档][Hnoi2013]游走
[Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...
- linux指令大全
系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...
- 微信小程序开发之微信支付
微信支付是小程序开发中很重要的一个环节,下面会结合实战进行分析总结 环境准备 https服务器 微信小程序只支持https请求,因此需要配置https的单向认证服务(请参考 另一篇文章https受信证 ...
- 算法竞赛入门经典 习题2-10 排列(permutation)
习题2-10 排列(permutation) 用1,2,3,-,9组成3个三位数 abc, def, 和ghi,每个数字恰好使用一次,要求 abc:def:ghi = 1:2:3.输出所有解.提示:不 ...
- 开机出现Oxc000000e故障的解决方法
Oxc000000e故障 故障表现:开机时不能正常地登录系统,而是直接弹出图2所示的Oxc000000e故障提示. 原因分析:由于安装或卸载某些比较特殊的软件,往往会对Win7的引导程序造成非常严重的 ...
- [ABP开源项目]--vue+vuex+vue-router+EF的权限管理系统
好久没写文字了,当然大家也不期待嘛,反正看代码就行了. 演示网站 首先说下这个项目吧. 如标题一样是基于VUE+.NET开发的框架,也是群友一直吼吼吼要一个vue版本的ABP框架. 我们先来看看首页吧 ...
- KMS注册
--KMS注册 -------------2014/03/25 --Read this First http://social.technet.microsoft.com/wiki/contents/ ...
- ABP从入门到精通(5):使用基于JWT标准的Token访问WebApi
项目:asp.net zero 4.2.0 .net core(1.1) 版本 我们做项目的时候可能会遇到需要提供api给app调用,ABP动态生成的WebApi提供了方便的基于JWT标准的Token ...