题目描述

N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.

输入输出格式

输入格式:

第一行给出N,M表示布丁的个数和好友的操作次数. 第二行N个数A1,A2...An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y. 若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0

输出格式:

针对第二类操作即询问,依次输出当前有多少段颜色.

输入输出样例

输入样例#1:

4 3
1 2 2 1
2
1 2 1
2
输出样例#1:

3
1

说明

1<=n,m<=100,000; 0<Ai,x,y<1,000,000

首先上网络上的题解:

1:将两个队列合并,有若干队列,总长度为n,直接合并,最坏O(N),
 
2:启发式合并呢?
 
每次我们把短的合并到长的上面去,O(短的长度)
 
咋看之下没有多大区别,
 
下面让我们看看均摊的情况:
 
1:每次O(N)
2:每次合并后,队列长度一定大于等于原来短的长度的两倍。
 
这样相当于每次合并都会让短的长度扩大一倍以上,
 
最多扩大logN次,所以总复杂度O(NlogN),每次O(logN)。
 
然后对于此题
我们先求出原序列的答案
每一种颜色搞一条链把该色结点串起来,记录下链条尾结点
把一种颜色的染成另一种,很简单把它合并过去,然后处理下对于答案的影响
但是。。。
比如把1染成2,但是s[1]>s[2],这时我们应该将2合并到1的链后面,但是会遇到一个麻烦的问题,就是这个链头是接1下的,也就是说以后找颜色2,发现没有颜色2只有颜色1。。。
于是我们应该开一个数组f,表示我们寻找一种颜色时,实际应该找哪个颜色下的链,遇到上面那种情况要交换f[1]和f[2]
 
以下是个人见解:
直接上代码,主要关注代码中的注释。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<stack>
#include<ctime>
using namespace std;
const int maxn=;
int n,m,ans;
int s[maxn],//每一个颜色的个数
Next[maxn],//邻接链
head[maxn],//邻接链
map[maxn],//存图
dp[maxn],//当前位置的实际颜色
first[maxn];//某颜色第一次出现的位置
void solve(int a,int b)
{
for(int i=head[a];i!=-;i=Next[i])
{
if(map[i+]==b)ans--;//更改颜色后与后方颜色相同,ans--
if(map[i-]==b)ans--;//更改颜色后与前方颜色相同,ans--
}//计算对结果的影响
for(int i=head[a];i!=-;i=Next[i])map[i]=b;//更改颜色
Next[first[a]]=head[b];head[b]=head[a];s[b]+=s[a];
head[a]=first[a]=s[a]=;//将两个邻接链合并,只需更改后继顺序即可
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(i=;i<=n;i++)
{
scanf("%d",&map[i]);
dp[map[i]]=map[i];
if(map[i]!=map[i-])ans++;
if(head[map[i]]==-)first[map[i]]=i;
s[map[i]]++;
Next[i]=head[map[i]];
head[map[i]]=i;
}//输入,赋初值 ,创建邻接链
for(i=;i<=m;i++)
{
int a,b,x;
scanf("%d",&x);
if(x==)printf("%d\n",ans);
else
{
scanf("%d%d",&a,&b);
if(a==b)continue;
if(s[dp[a]]>s[dp[b]])
swap(dp[a],dp[b]);
a=dp[a];b=dp[b];
//dp数组的意义在于每次都是选颜色相对少的集合进行合并以提高效率,但由于之后可能会有与这个颜色
//相关的变换所以需要一个数组来维护当前颜色对应的实际颜色
if(s[a]==)continue;
s[b]+=s[a];s[a]=;
solve(a,b);
}
}
return ;
}

[HNOI2009]梦幻布丁 算法技巧之邻接链的更多相关文章

  1. bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1818  Solved: 761[Submit][Status ...

  2. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  3. BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]

    1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...

  4. [HNOI2009] 梦幻布丁

    [HNOI2009] 梦幻布丁 标签: 链表 题解 可以直接用链表启发式合并做. 合并的细节处理稍微有点麻烦. 假如需要变成另一种颜色的那个颜色的个数更多,那么就肯定不能直接合. 维护一个color数 ...

  5. bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...

  6. 1483: [HNOI2009]梦幻布丁

    1483: [HNOI2009]梦幻布丁 链接 分析: 启发式合并+链表. 代码: #include<cstdio> #include<algorithm> #include& ...

  7. 洛谷 3201 [HNOI2009]梦幻布丁 解题报告

    3201 [HNOI2009]梦幻布丁 题目描述 \(N\)个布丁摆成一行,进行\(M\)次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为\(1,2,2 ...

  8. bzoj 1483: [HNOI2009]梦幻布丁

    1483: [HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...

  9. BZOJ 1483:[HNOI2009]梦幻布丁(链表+启发式合并)

    [HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一 ...

随机推荐

  1. C#基础之------委托

    一.委托的基本介绍 可以任务委托是持有一个或多个方法的对象.当然,正常情况下你不会去执行一个对象,但是委托与对象不同.可以执行委托,这是委托就会执行他所"持有"的方法. 举个栗子就 ...

  2. H5游戏见缝插针开发

    中秋节马上就要来临,公司开发了一个h5小游戏叉月饼,其实就是游戏“见缝插针”的翻版.这个游戏的开发任务落到了我的头上... 一 游戏介绍 游戏场景基本如下所示:         二 所用工具 这次的开 ...

  3. java泛型探索——介绍篇

    1. 泛型出现前后代码对比 先来看看泛型出现前,代码是这么写的: List words = new ArrayList(); words.add("Hello "); words. ...

  4. MVC两种获取上传的文件数据变量的方式

    第一种方式,在控制器中利用HttpPostedFileBase参数对象获取. [HttpPost] public ActionResult SaveFile(HttpPostedFileBase up ...

  5. WinRAR5.01注册码附注册机

    把下面的注册码复制到"记事本"中,另存为"rarreg.key"文件,放到WinRAR安装目录即完成注册.RAR registration datakjcy8U ...

  6. Centos6.5安装memcached

    1.检查libevent 首先检查系统中是否安装了libevent(Memcache用到了libevent这个库用于Socket的处理). # rpm -q libevent libevent-1.4 ...

  7. Docker+SpringBoot+Mybatis+thymeleaf的Java博客系统开源啦

    个人博客 对于技术人员来说,拥有自己的个人博客应该是一件令人向往的事情,可以记录和分享自己的观点,想到这件事就觉得有意思,但是刚开始写博客的时候脑海中是没有搭建个人博客这一想法的,因为刚起步的时候连我 ...

  8. 利用有限自动机(finite automata)进行模式匹配

    一.有限自动机定义及基本术语: 一个有限自动机 M 是一个5元组(Q, ,A, Σ, δ),其中: Q 是所有状态的有限集合;  ∈ Q (属于)是初始状态; A ⊆ Q (子集)是接受状态的集合; ...

  9. 18、面向对象基本原则及UML类图简介

    18.1.面向对象基本原则 18.1.1.面向抽象原则 抽象类特点: a.抽象类中可以有abstract方法,也可以有非abstract方法. b.抽象类不能用new运算符创建对象. c.如果一个非抽 ...

  10. 【Java并发系列03】ThreadLocal详解

    img { border: solid 1px } 一.前言 ThreadLocal这个对象就是为多线程而生的,没有了多线程ThreadLocal就没有存在的必要了.可以将任何你想在每个线程独享的对象 ...