题目描述

N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.

输入输出格式

输入格式:

第一行给出N,M表示布丁的个数和好友的操作次数. 第二行N个数A1,A2...An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y. 若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0

输出格式:

针对第二类操作即询问,依次输出当前有多少段颜色.

输入输出样例

输入样例#1:

4 3
1 2 2 1
2
1 2 1
2
输出样例#1:

3
1

说明

1<=n,m<=100,000; 0<Ai,x,y<1,000,000

首先上网络上的题解:

1:将两个队列合并,有若干队列,总长度为n,直接合并,最坏O(N),
 
2:启发式合并呢?
 
每次我们把短的合并到长的上面去,O(短的长度)
 
咋看之下没有多大区别,
 
下面让我们看看均摊的情况:
 
1:每次O(N)
2:每次合并后,队列长度一定大于等于原来短的长度的两倍。
 
这样相当于每次合并都会让短的长度扩大一倍以上,
 
最多扩大logN次,所以总复杂度O(NlogN),每次O(logN)。
 
然后对于此题
我们先求出原序列的答案
每一种颜色搞一条链把该色结点串起来,记录下链条尾结点
把一种颜色的染成另一种,很简单把它合并过去,然后处理下对于答案的影响
但是。。。
比如把1染成2,但是s[1]>s[2],这时我们应该将2合并到1的链后面,但是会遇到一个麻烦的问题,就是这个链头是接1下的,也就是说以后找颜色2,发现没有颜色2只有颜色1。。。
于是我们应该开一个数组f,表示我们寻找一种颜色时,实际应该找哪个颜色下的链,遇到上面那种情况要交换f[1]和f[2]
 
以下是个人见解:
直接上代码,主要关注代码中的注释。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<queue>
#include<stack>
#include<ctime>
using namespace std;
const int maxn=;
int n,m,ans;
int s[maxn],//每一个颜色的个数
Next[maxn],//邻接链
head[maxn],//邻接链
map[maxn],//存图
dp[maxn],//当前位置的实际颜色
first[maxn];//某颜色第一次出现的位置
void solve(int a,int b)
{
for(int i=head[a];i!=-;i=Next[i])
{
if(map[i+]==b)ans--;//更改颜色后与后方颜色相同,ans--
if(map[i-]==b)ans--;//更改颜色后与前方颜色相同,ans--
}//计算对结果的影响
for(int i=head[a];i!=-;i=Next[i])map[i]=b;//更改颜色
Next[first[a]]=head[b];head[b]=head[a];s[b]+=s[a];
head[a]=first[a]=s[a]=;//将两个邻接链合并,只需更改后继顺序即可
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
memset(head,-,sizeof(head));
for(i=;i<=n;i++)
{
scanf("%d",&map[i]);
dp[map[i]]=map[i];
if(map[i]!=map[i-])ans++;
if(head[map[i]]==-)first[map[i]]=i;
s[map[i]]++;
Next[i]=head[map[i]];
head[map[i]]=i;
}//输入,赋初值 ,创建邻接链
for(i=;i<=m;i++)
{
int a,b,x;
scanf("%d",&x);
if(x==)printf("%d\n",ans);
else
{
scanf("%d%d",&a,&b);
if(a==b)continue;
if(s[dp[a]]>s[dp[b]])
swap(dp[a],dp[b]);
a=dp[a];b=dp[b];
//dp数组的意义在于每次都是选颜色相对少的集合进行合并以提高效率,但由于之后可能会有与这个颜色
//相关的变换所以需要一个数组来维护当前颜色对应的实际颜色
if(s[a]==)continue;
s[b]+=s[a];s[a]=;
solve(a,b);
}
}
return ;
}

[HNOI2009]梦幻布丁 算法技巧之邻接链的更多相关文章

  1. bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1818  Solved: 761[Submit][Status ...

  2. BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )

    把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...

  3. BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]

    1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...

  4. [HNOI2009] 梦幻布丁

    [HNOI2009] 梦幻布丁 标签: 链表 题解 可以直接用链表启发式合并做. 合并的细节处理稍微有点麻烦. 假如需要变成另一种颜色的那个颜色的个数更多,那么就肯定不能直接合. 维护一个color数 ...

  5. bzoj 1483: [HNOI2009]梦幻布丁 启发式合并vector

    1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description N个 ...

  6. 1483: [HNOI2009]梦幻布丁

    1483: [HNOI2009]梦幻布丁 链接 分析: 启发式合并+链表. 代码: #include<cstdio> #include<algorithm> #include& ...

  7. 洛谷 3201 [HNOI2009]梦幻布丁 解题报告

    3201 [HNOI2009]梦幻布丁 题目描述 \(N\)个布丁摆成一行,进行\(M\)次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为\(1,2,2 ...

  8. bzoj 1483: [HNOI2009]梦幻布丁

    1483: [HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1 ...

  9. BZOJ 1483:[HNOI2009]梦幻布丁(链表+启发式合并)

    [HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一 ...

随机推荐

  1. jquery的ajax与spring mvc对接注意事项

    昨天一直纠结这么一个问题,应用场景是这样的: 这里登陆是通过jquery的ajax传输数据到后台controller类相应的映射mapping接收.本来是想,在后台验证成功之后返回一个视图modelA ...

  2. poj 1001 分析

    1) n = 0; return 1: 2) n = 1; bool standardizeNumNoDot(string &s){标准化是一定要得} _将‘.’前后的〇全部去除,正常retu ...

  3. 学习笔记:javascript内置对象:字符串对象

    1.字符串的创建   var str = "Hello Microsoft!";   2.字符串属性   constructor  返回创建字符串属性的函数   length    ...

  4. CSS动画效果的回调

    用纯JS实现动画效果代码量大,计算复杂.因此现在前端页面的动画效果一般都采用CSS来实现. CSS动画实现简单高效,但是在处理动画,控制动画过程上却缺少一些有效手段. 例如我们想在动画效果完成时调用回 ...

  5. 彻底搞清函数中的this指向

    近日阅读<javascript设计模式与开发实践> 书中的apply和call调用函数层出不穷,很多妙用: 函数中的this是根据调用方式来决定的 函数调用方式有4中 1.直接调用 a(. ...

  6. 分辨率、像素和PPI

    屏幕尺寸是指屏幕对角线的长度,一般以英寸为单位,1英寸(inch)=2.54厘米(cm).传统意义上的照片尺寸也是这个概念.所以同样尺寸(指对角线)的屏幕,也可能长宽比率不同.像素(Pixel):是位 ...

  7. .Net程序员学用Oracle系列(29):PLSQL 之批量应用和系统包

    1.批量数据操作 1.1.批量生成数据 1.2.批量插入数据 2.批量生成脚本 3.生成数据字典 4.常见系统包 4.1.DBMS_OUTPUT 4.2.DBMS_RANDOM 4.3.其它系统包及常 ...

  8. JQuery中参数e,event

    与Flex类似,JavaScript中的事件也同样存在,捕获--触发--冒泡 三个节点.比较常见的情况是,在子DIV触发事件时,如果父DIV也监听同类事件,那么也会一起触发,并向上冒泡 jQuery对 ...

  9. (数字IC)低功耗设计入门(五)——RTL级低功耗设计(续)

    二.RTL级低功耗设计(续) 前面一篇博文我记录了操作数隔离等低功耗设计,这里就主要介绍一下使用门控时钟进行低功耗设计. (4)门控时钟 门控时钟在我的第一篇博客中有简单的描述,这里就进行比较详细的描 ...

  10. Exploit-Exercises nebule 旅行日志(一)

    exploit-exercises.com provides a variety of virtual machines, documentation and challenges that can ...