[Hadoop源码系列] FairScheduler分配申请和分配container的过程
1、如何申请资源
1.1 如何启动AM并申请资源
1.1.1 如何启动AM
val yarnClient = YarnClient.createYarnClient setupCredentials() yarnClient.init(yarnConf) yarnClient.start() // Get a new application from our RM val newApp = yarnClient.createApplication() val newAppResponse = newApp.getNewApplicationResponse() appId = newAppResponse.getApplicationId() // Set up the appropriate contexts to launch our AM val containerContext = createContainerLaunchContext(newAppResponse) val appContext = createApplicationSubmissionContext(newApp, containerContext) // Finally, submit and monitor the application logInfo(s"Submitting application $appId to ResourceManager") yarnClient.submitApplication(appContext)
1.1.2 FairScheduler如何处理AM的ResourceRequest
1、FairScheduler接收到SchedulerEventType.APP_ADDED之后,调用addApplication方法把把RMApp添加到队列里面,结束之后发送RMAppEventType.APP_ACCEPTED给RMApp
2、RMApp启动RMAttempt之后,发送SchedulerEventType.APP_ATTEMPT_ADDED给FairScheduler
LOG.info("Added Application Attempt " + applicationAttemptId + " to scheduler from user: " + user);
3、FairScheduler调用addApplicationAttempt方法,发送RMAppAttemptEventType.ATTEMPT_ADDED事件给RMAppAttempt,RMAppAttempt随后调用Scheduler的allocate方法发送AM的ResourceRequest
4、FairScheduler在allocate方法里面对该请求进行处理,FairScheduler对于AM的资源请求的优先级上并没有特殊的照顾,详细请看章节2 如何分配资源
1.2 AM启动之后如何申请资源
1.2.1、注册AM
amClient = AMRMClient.createAMRMClient() amClient.init(conf) amClient.start() amClient.registerApplicationMaster(Utils.localHostName(), 0, uiAddress)
1.2.2、发送资源请求
// 1.创建资源请求
amClient.addContainerRequest(request)
// 2.发送资源请求
val allocateResponse = amClient.allocate(progressIndicator)
val allocatedContainers = allocateResponse.getAllocatedContainers()
if (allocatedContainers.size > 0) {
// 3.请求返回之后处理Container
handleAllocatedContainers(allocatedContainers.asScala)
}
1.2.3、启动Container
def startContainer(): java.util.Map[String, ByteBuffer] = {
val ctx = Records.newRecord(classOf[ContainerLaunchContext])
.asInstanceOf[ContainerLaunchContext]
val env = prepareEnvironment().asJava
ctx.setLocalResources(localResources.asJava)
ctx.setEnvironment(env)
val credentials = UserGroupInformation.getCurrentUser().getCredentials()
val dob = new DataOutputBuffer()
credentials.writeTokenStorageToStream(dob)
ctx.setTokens(ByteBuffer.wrap(dob.getData()))
val commands = prepareCommand()
ctx.setCommands(commands.asJava)
ctx.setApplicationACLs(YarnSparkHadoopUtil.getApplicationAclsForYarn(securityMgr).asJava)
// If external shuffle service is enabled, register with the Yarn shuffle service already
// started on the NodeManager and, if authentication is enabled, provide it with our secret
// key for fetching shuffle files later
if (sparkConf.get(SHUFFLE_SERVICE_ENABLED)) {
val secretString = securityMgr.getSecretKey()
val secretBytes =
if (secretString != null) {
// This conversion must match how the YarnShuffleService decodes our secret
JavaUtils.stringToBytes(secretString)
} else {
// Authentication is not enabled, so just provide dummy metadata
ByteBuffer.allocate(0)
}
ctx.setServiceData(Collections.singletonMap("spark_shuffle", secretBytes))
}
// Send the start request to the ContainerManager
try {
nmClient.startContainer(container.get, ctx)
} catch {
case ex: Exception =>
throw new SparkException(s"Exception while starting container ${container.get.getId}" +
s" on host $hostname", ex)
}
}
2、如何分配资源
2.1 接受资源请求步骤
在FairScheduler的allocate方法里面仅仅是记录ResourceRequest,并不会真正的立马分配。
流程如下:
1、检查该APP是否注册过
2、检查资源的请求是否超过最大内存和最大CPU的限制
3、记录资源请求的时间,最后container分配的延迟会体现在队列metrics的appAttemptFirstContainerAllocationDelay当中
4、释放AM发过来的已经不需要的资源,主要逻辑在FSAppAttempt的containerCompleted方法里
5、更新资源请求,所有资源请求都是记录在AppSchedulingInfo当中的requests(注意:只有是ANY的资源请求才会被立马更新到QueueMetrics的PendingResources里)
6、找出该APP被标记为抢占的container ID列表preemptionContainerIds
7、更新APP的黑名单列表,该信息被记录在AppSchedulingInfo当中
8、从FSAppAttempt的newlyAllocatedContainers当中获取最新被分配的container
9、返回preemptionContainerIds、HeadRoom、ContainerList、NMTokenList。(注:Headroom = Math.min(Math.min(queueFairShare - queueUsage, 0), maxAvailableResource)
2.2 请求和分配的关系

2.3 如何分配
2.3.1 分配方式
分配有两种方式:
1、接收到NodeManager的心跳的时候进行分配
NodeManager每隔一秒(yarn.resourcemanager.nodemanagers.heartbeat-interval-ms)给ResourceManager发送一个心跳事件NODE_UPDATE,接收到心跳事件之后,在FairScheduler的nodeUpdate方法里进行处理。
NodeManager会汇报新启动的Container列表newlyLaunchedContainers和已经结束的Container列表completedContainers。然后在attemptScheduling方法里面进行分配。
2、持续调度方式
它有一个单独的线程,线程名称是FairSchedulerContinuousScheduling,每5毫秒对所有节点的资源进行排序,然后遍历所有节点,调用attemptScheduling方法进行分配。
开启持续调度模式之后,在接收到心跳事件NODE_UPDATE的时候,只有在completedContainers不为空的情况下,才会进行调度
attemptScheduling首先会检查是否有资源预留,如果有预留,则直接为预留的APP分配container
没有预留的分配过程如下:
1、最大可分配资源为这台机器的可用资源的一半,从root队列开始自上而下进行分配Resource assignment = queueMgr.getRootQueue().assignContainer(node);
2、分配到一个Container之后,判断是否要连续分配多个,最大支持连续分配多少个?
以下是涉及到的各个参数以及参数的默认值:
yarn.scheduler.fair.assignmultiple false (建议设置为true)
yarn.scheduler.fair.dynamic.max.assign true (hadoop2.7之后就没有这个参数了)
yarn.scheduler.fair.max.assign -1 (建议设置为2~3,不要设置得太多,否则会有调度倾斜的问题)
2.3.2 如何从队列当中选出APP进行资源分配
入口在queueMgr.getRootQueue().assignContainer(node);
1、检查当前队列的使用量是否小于最大资源量
2、首先对子队列进行排序,优先顺序请参照章节 2.3.4 如何确定优先顺序
3、排序完再调用子队列的assignContainer方法分配container
4、一直递归到叶子队列
叶子队列如何进行分配?
1、先对runnableApps进行排序,排序完成之后,for循环遍历一下
2、先检查该Node是否在APP的黑名单当中
3、检查该队列是否可以运行该APP的AM,主要是检查是否超过了maxAMShare(根据amRunning字段判断是否已经启动了AM了)
检查逻辑的伪代码如下:
maxResource = getFairShare()
if (maxResource == 0) {
// 最大资源是队列的MaxShare和集群总资源取一个小的值
maxResource = Math.min(getRootQueue().AvailableResource(), getMaxShare());
}
maxAMResource = maxResource * maxAMShare
if (amResourceUsage + amResource) > maxAMResource) {
// 可以运行
return true
} else {
// 不可以运行
return false
}
4、给该APP分配container
下面以一个例子来说明分配的过程是如何选择队列的:
假设队列的结构是这样子的
root
---->BU_1
-------->A
-------->B
---->BU_2
-------->C
-------->D

2.3.3 任务分配Container的本地性
任务分配Container的时候会考虑请求的本地性,对于调度器来说,它的本地性分为三种:NODE_LOCAL, RACK_LOCAL, OFF_SWITCH
具体方法位于FSAppAttempt的assignContainer方法
遍历优先级
给该优先级的调度机会+1
获取RackLocal和NodeLocal的任务
计算允许分配的本地性级别allowedLocality,默认是NODE_LOCAL
1、心跳分配方式
计算调度机会,如果该优先级的任务的调度机会超过了(节点数 * NODE_LOCAL阈值),降级为RACK_LOCAL,如果该优先级的任务的调度机会超过了(节点数 * RACK_LOCAL阈值),降级为OFF_SWITCH
2、连续分配方式
计算等待时间waitTime -= lastScheduledContainer.get(priority);
如果waitTime超过了NODE_LOCAL允许的delay时间,就降级为RACK_LOCAL,再超过RACK_LOCAL允许的delay的时间,就降级为OFF_SWITCH
分配NODE_LOCAL的container
允许分配的本地性级别>=RACK_LOCAL,分配RACK_LOCAL的container
允许分配的本地性级别=OFF_SWITCH,分配OFF_SWITCH的container
都分不到,等待下一次机会
相关参数:
默认值全是-1,则允许的本地性级别是OFF_SWITCH
yarn.scheduler.fair.locality-delay-node-ms -1
yarn.scheduler.fair.locality-delay-rack-ms -1
yarn.scheduler.fair.locality.threshold.node -1
yarn.scheduler.fair.locality.threshold.rack -1
2.3.4 Container分配
1、检查该节点的资源是否足够,如果资源充足
2、如果当前的allowedLocality比实际分配的本地性低,则重置allowedLocality
3、把新分配的Container加到newlyAllocatedContainers和liveContainers列表中
4、把分配的container信息同步到appSchedulingInfo当中
5、发送RMContainerEventType.START事件
6、更新FSSchedulerNode记录的container信息
7、如果被分配的是AM,则设置amRunning为true
如果资源不够,则检查是否可以预留资源
条件:
1)Container的资源请求必须小于Scheduler的增量分配内存 * 倍数(默认应该是2g)
2)如果已经存在的预留数 < 本地性对应的可用节点 * 预留比例
3)一个节点只允许同时为一个APP预留资源
相关参数:
yarn.scheduler.increment-allocation-mb 1024
yarn.scheduler.increment-allocation-vcores 1
yarn.scheduler.reservation-threshold.increment-multiple 2
yarn.scheduler.fair.reservable-nodes 0.05
2.3.4 如何确定优先顺序
该比较规则同时适用于队列和APP,详细代码位于FairSharePolicy当中
MinShare = Math.min(getMinShare(), getDemand())
1、(当前资源使用量 / MinShare)的比值越小,优先级越高
2、如果双方资源使用量都超过MinShare,则(当前资源使用量 / 权重)的比值越小,优先级越高
3、启动时间越早,优先级越高
4、最后实在比不出来,就比名字...
从上面分配的规则当中能看出来MinShare是非常重要的一个指标,当资源使用量没有超过MinShare之前,队列在分配的时候就会比较优先,切记一定要设置啊!
注:getMinShare()是FairScheduler当中队列的minResources
<minResources>6887116 mb,4491 vcores</minResources>
[Hadoop源码系列] FairScheduler分配申请和分配container的过程的更多相关文章
- Hadoop源码系列(一)FairScheduler申请和分配container的过程
1.如何申请资源 1.1 如何启动AM并申请资源 1.1.1 如何启动AM val yarnClient = YarnClient.createYarnClient setupCredentials( ...
- Hadoop源码解读系列目录
Hadoop源码解读系列 1.hadoop源码|common模块-configuration详解2.hadoop源码|core模块-序列化与压缩详解3.hadoop源码|core模块-远程调用与NIO ...
- 安装Hadoop系列 — 导入Hadoop源码项目
将Hadoop源码导入Eclipse有个最大好处就是通过 "ctrl + shift + r" 可以快速打开Hadoop源码文件. 第一步:在Eclipse新建一个Java项目,h ...
- Spark源码系列:RDD repartition、coalesce 对比
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对R ...
- Hadoop源码学习笔记之NameNode启动场景流程一:源码环境搭建和项目模块及NameNode结构简单介绍
最近在跟着一个大佬学习Hadoop底层源码及架构等知识点,觉得有必要记录下来这个学习过程.想到了这个废弃已久的blog账号,决定重新开始更新. 主要分以下几步来进行源码学习: 一.搭建源码阅读环境二. ...
- 9 hbase源码系列(九)StoreFile存储格式
hbase源码系列(九)StoreFile存储格式 从这一章开始要讲Region Server这块的了,但是在讲Region Server这块之前得讲一下StoreFile,否则后面的不好讲下去 ...
- HBase源码系列之HFile
本文讨论0.98版本的hbase里v2版本.其实对于HFile能有一个大体的较深入理解是在我去查看"到底是不是一条记录不能垮block"的时候突然意识到的. 首先说一个对HFile ...
- 深入学习JDK源码系列之、ArrayList
前言 JDK源码解析系列文章,都是基于JDK8分析的,虽然JDK15马上要出来了,但是JDK8我还不会,我... 类图 实现了RandomAccess接口,可以随机访问 实现了Cloneable接口, ...
- Hadoop源码编译过程
一. 为什么要编译Hadoop源码 Hadoop是使用Java语言开发的,但是有一些需求和操作并不适合使用java,所以就引入了本地库(Native Libraries)的概念,通 ...
随机推荐
- No matching provisioning profiles found for "Applications/MyApp.app”问题解决
新开发的一个app打包报错,度娘谷歌了好久,废了不少时间,发现错误提示已经很明显了,只是自己没读懂而已,先说下问题和解决方法,给同意遇到这个问题的你: Failed to locate or gene ...
- Linux常用命令说明(记录自己Linux命令使用情况,后续会持续更新)
首次记录时间--20170602 感觉自己Linux命令使用掌握的情况非常差,今天先记录当前会的几个. 1#cd(change directory) 切换工作目录(或者叫修改当前目录) eg. cd ...
- 正则表达式入门案例C#
---恢复内容开始--- 在网上百度了好多关于正则表达式的,不过好多都是关于语法的,没有一个具体的案例,有点让人难以入门,毕竟我还是喜欢由具体到抽象的认识.所以我就在这先提供了一个入门小案例(学了了6 ...
- 一天搞定CSS:表格(table)--19
1.表格标签 表格标签的嵌套关系 <table> <!--表格头--> <thead> <!--表格行--> <tr> <!--表格列 ...
- PHP文件操作,多行句子的读取,file()函数,file_get_contents()函数,file_put_contents()函数,is_file,统计网站pv (访问量),文件的复制 copy,文件重命名 rename,删除文件 unlink
php中添加utf-8: header("Content-type:text/html;charset='UTF-8'"); 文件操作步骤: 1.在同一目录下建立一个file.tx ...
- 关于AD9516芯片的硬件设计和FPGA程序编写心得
最近在做一个项目,其中有涉及时钟芯片AD9516的硬件设计和软件编程,有些使用心得,供大家参考讨论. AD9516,这是一个由ADI公司设计的14路输出时钟发生器,具有亚皮秒级抖动性能,还配有片内集成 ...
- cpp(第十一章)
1. std::istream & operator>>(std::istream &is,complex_c &t) { std::cout<<&qu ...
- 织梦dedecms后台发布文章提示“标题不能为空”
问题症状:V5.7登录后台后,发布英文标题没问题,发布中文会提示“标题不能为空”. 问题根源:htmlspecialchars在php5.4默认为utf8编码,gbk编码字符串经 htmlspecia ...
- 初识 ActiveMQ
其实算不上初识了,工作一年来一直都有接触 mq 相关的东西.但是,从来都是粘贴复制别人的配置代码,却从未认真系统的学习过它,现在线上用 mq 的项目出问题了,老板在后面拿枪指着呢,不得不好好研究下了. ...
- 编写高质量代码改善程序的157个建议:使用Dynamic来简化反射的实现
最近有时间看点书了,把157个建议在重新看一遍,代码都调试一遍.当我看到第15个建议的时候有些出入,就记录下来,欢迎大家来探讨. 第十五条建议是,使用dynamic简化反射的使用,没有说明具体的条件. ...