二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难

不知到自己怎么相出来的。。。感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因为我现在需要训练的是做题的思维方法啊!

sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,求sum(1)—sum(N) 的乘积。

首先,这道题直接做,感觉无从下手,那么我就想,怎么来转换一下,求1~n中每个数的一的个数总相乘之积,首先感觉到,每个数都会有唯一对应的1的个数,且一的个数的取值只有最多60,因为n最大   10^15,  那么我就想,如果枚举1的个数k,计算有多少个数含有k个1,(因为数位dp就是来做,有多少满足的数,且不关注数的大小)这样就转化为数位dp的模型了

另外,发现含有k个1的数个数可能非常多,快速幂搞一搞啦,

不过快速幂要注意超long long 的情况!!,因为在很多题mod比较大,mod<根号2^31,平方之后就有可能超int!!!!!

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; typedef long long int ll;
const int MAXN=+;
const ll mod=; ll n,Ans;
ll c[MAXN][MAXN];
int l,wei[MAXN];
void pre()
{
for (int i=;i<=;++i)
c[i][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;++j)
c[i][j]=c[i-][j-]+c[i-][j];//c[i][j]表示i位,j个1。
scanf("%lld",&n);
l=,n+=;//只能计算小于n的个数,所以要加1
while(n)
{
wei[++l]=n&;
n>>=;
}//将n转换为2进制。
}
ll Solve(int x)//解决有x个1的方案数
{
ll sum=;
for (int i=l;i>=;--i)
{
if(wei[i]==)
{
sum+=c[i-][x];
x--;
}
if(x<) break;
}
return sum;
}
ll Pow(ll a, ll b){
ll tot=;
a%=mod;
while(b)
{
if(b&)
{
tot=a*tot%mod;
tot%=mod;
}
b>>=;a*=a;a%=mod;
}
return tot;
}
int main()
{
pre();
Ans=1ll;
for(int i=;i<=l;++i)
Ans=Ans*Pow(i,Solve(i))%mod;
printf("%lld\n",Ans);
return ;
}

bzoj3209 花神的数论题 (二进制数位dp)的更多相关文章

  1. [bzoj3209]花神的数论题_数位dp

    花神的数论题 bzoj-3209 题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$ 注释:$1\le n\le 10^{15}$. 想法 ...

  2. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  3. 2018.10.27 bzoj3209: 花神的数论题(数位dp)

    传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...

  4. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  5. 【BZOJ3209】花神的数论题(数位DP)

    点此看题面 大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\). 数位\(DP\) 很显然,这是一道数位\(DP\)题.我们可以先 ...

  6. BZOJ 3209: 花神的数论题【数位dp】

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  7. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  8. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  9. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

随机推荐

  1. html+css手记

    ----------------------html定义和基本结构---------------------- HTML是 HyperText Mark-up Language 的首字母简写,意思是超 ...

  2. Ajax异步请求模板

    $.ajax({ url: '', type: 'post', data: {'id':id}, dataType: 'json', success: function(data,statusText ...

  3. linux环境下安装nginx步骤

    开始前,请确认gcc g++开发类库是否装好,默认已经安装. ububtu平台编译环境可以使用以下指令 apt-get install build-essential apt-get install ...

  4. 8.中断按键驱动程序之poll机制

    本节继续在上一节中断按键程序里改进,添加poll机制. 那么我们为什么还需要poll机制呢.之前的测试程序是这样: ) { read(fd, &key_val, ); printf(" ...

  5. 为何webpack打包后的文件要放在服务器上才能运行

    为何会有此问: 在刚开始使用vue-cli时还不知道打包后的文件要在服务中才能运行,直接点开后发现页面白板,请教大神后得知要起一个服务才能运行起来,当时我脑子中的逻辑是这样的: 因为:js代码是由浏览 ...

  6. poj 1014多重背包

    题意:给出价值为1,2,3,4,5,6的6种物品数量,问是否能将物品分成两份,使两份的总价值相等. 思路:求出总价值除二,做多重背包,需要二进制优化. 代码: #include<iostream ...

  7. C-C++到底支不支持VLA以及两种语言中const的区别

    C-C++到底支不支持VLA以及两种语言中const的区别 到底支不支持VLA VLA就是variable-length array,也就是变长数组. 最近写程序的时候无意间发现,gcc中竟然支持下面 ...

  8. Spring集成RabbitMQ-连接和消息模板

    ConnectionFactory ConnectionFactory是RabbitMQ服务掌握连接Connection生杀大权的重要组件 有了它,就可以创建Connection(org.spring ...

  9. mysql 返回自增id

    String dateNow=  DateTime.Now.ToString("yyyyMMddhhmmss"+  new Random().Next(1, 99)); //随机数 ...

  10. FileInputStream 小Demo

    要求:设计如下界面  文本框里面可以输入的路径和文件名  单机按钮可以读取在 指定的文件  并把文件内容显示到一个文本域里面来 代码: /** * */ package com.niit.homewo ...