这里是比赛地址:http://tieba.baidu.com/p/2859693237,果然参赛神牛汇集。

第三题题目大意如下:

已知n条二次函数曲线Si(x)=aix^2+bix+ci(ai>=0),定义F(x)=max{Si(x)},求出F(x)在[0,1000]上的最小值。第一行为数据组数T。每组数据第一行位正整数n,以下n行每行包括3个整数a,b,c。对于每组数据,输出所要求的最小值,保留4位小数。T<
10, n ≤ 10000,0 ≤ a ≤ 100,|b| ≤ 5000, |c| ≤
5000。

有点像数学+二分,开始我想二分x的,但发现函数众多,线索混乱,觉得这会有问题。

后来这道题经RXD大牛点拨,我有了一个绝妙的想法 :二分枚举答案f(x),并验证。比如,我们枚举的答案当前是k,那么我们在坐标系里划一道y=k的图像,这与n条函数图像可能会有交点。因
F(x)=max{Si(x)},,所以在【0...1000】范围内,y=k一定在最上面。设某一二次函数解析式y=ax^2+bx+c,它与直线的交点为方程ax^2+bx+c=k的根(因为0≤
a
 ,所以如果b^2-4*a*c<0,说明函数在直线上方,可以直接否决当前的K),而它在直线的下方的部分可以用x1<x<x2来表示(x1和x2是方程的根)。如果对于所有的函数,其在直线下方的解集存在于【0..1000】范围内(无论多少),说明当前的K是可行的。

时间效率:O(log2(P)*n)),其中p是你答案枚举的范围。(最好设的大一点) 

然而,我交上去后,发现全WA了!! 后来经过我对数据的不断调试,发现如下两个问题。

(1)二分答案时如何确定边界。保留4位精度嘛,我原先用ok函数来判断。如果ok(l)=ok(r),就退出。

long ok(double k)
{
  if (long(k*100000)%10>4) return(long(k*10000+1));
  return (long(k*10000));
}

即如果枚举的l和r小数点后四位相同,就退出。

但是这会有问题 ,比如l=0.999,并无限接近1;r=1.001,也无限接近1。这样,即使二分到很后面,如l=0.99999999,r=1.00000001,他们的后四位仍然不同。

后来我发现一个更简单的判断方法,即(r-l<=0.00001 (5位)) 

(2)a可能为0,即某一函数可能不是二次函数,而是一次函数。

因为在求根公式中,a被当做了除数,这样除0的话就会爆掉。因此,对于一次函数,要简单处理一下(其实更容易)



以下附代码:

#include<stdio.h>
#include<cmath>
using namespace std;
long a[10001],b[10001],c[10001],i,j,t,n,oo=2000000000;                           //oo被视为无限大
double ans;
bool check(double h)
{
  long i;double x1,x2,t,start1=0,start2=1000,p;
  for (i=1;i<=n;i++)
  {
    p=b[i]*b[i]-4*a[i]*(c[i]-h);
    if (p<0) returnfalse;p=sqrt(p);
    if (a[i]==0)
    {
      if(b[i]>0){x1=-oo;x2=(h-c[i])/b[i];}
      else if(b[i]<0){x1=(h-c[i])/b[i];x2=oo;}
      else if (c[i]>h) return false;
      else { x1=-oo;x2=oo;}
    }
    else
    {
      x1=(-b[i]-p)/a[i]/2;
      x2=(-b[i]+p)/a[i]/2;
    }
    if (start2<x1||x2<start1) returnfalse;
    if (x1>start1) start1=x1;if (x2<start2)start2=x2;
  }
  return true;
}
double erfen(double l,double r)
{
  double mid=(l+r)/2;
  if ((r-l)<=1e-5) return mid;
  if (check(mid)) return erfen(l,mid);
  return erfen(mid,r);
}
int main()
{
  freopen("pyc.in","r",stdin);
  freopen("pyc.out","w",stdout);
  scanf("%ld",&t);
  for (j=1;j<=t;j++)
  {
    scanf("%ld",&n);
    for (i=1;i<=n;i++)
     scanf("%ld%ld%ld",&a[i],&b[i],&c[i]);
    ans=erfen(0,10000);                         //当然再开大一点也可以,只是不要超时了
    printf("%.4f\n",ans);
  }
}

最后提出一个意见,第10组数据中出现了a<0,使我的程序出错,请PYC及时纠正。O(∩_∩)O~~

PYC#1欢乐赛第三题题解的更多相关文章

  1. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  2. Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)

    这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...

  3. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  4. BestCoder Round #86 二,三题题解(尺取法)

    第一题太水,跳过了. NanoApe Loves Sequence题目描述:退役狗 NanoApe 滚回去学文化课啦! 在数学课上,NanoApe 心痒痒又玩起了数列.他在纸上随便写了一个长度为 nn ...

  5. BestCoder Round #85 前三题题解

    sum Accepts: 822 Submissions: 1744 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/13107 ...

  6. bestcoder Round #7 前三题题解

    BestCoder Round #7 Start Time : 2014-08-31 19:00:00    End Time : 2014-08-31 21:00:00Contest Type : ...

  7. Newnode's NOI(P?)模拟赛 第三题 (主席树优化建图 + tarjan)

    题目/题解戳这里 这道题题目保证a,b,ca,b,ca,b,c各是一个排列-mdzz考场上想到正解但是没看到是排列,相等的情况想了半天-然后写了暴力60分走人- 由于两两间关系一定,那么就是一个竞赛图 ...

  8. Codeforces Round #530 (Div. 2) (前三题题解)

    总评 今天是个上分的好日子,可惜12:30修仙场并没有打... A. Snowball(小模拟) 我上来还以为直接能O(1)算出来没想到还能小于等于0的时候变成0,那么只能小模拟了.从最高的地方进行高 ...

  9. BestCoder Round #11 (Div. 2) 前三题题解

    题目链接: huangjing hdu5054 Alice and Bob 思路: 就是(x,y)在两个參考系中的表示演全然一样.那么仅仅可能在这个矩形的中点.. 题目: Alice and Bob ...

随机推荐

  1. Plupload上传插件自定义图片的修改

    若自定义的一个上传图片效果,代码(可能不全),当用户再次点击所有或任意一个上传图片的input时,uploader.files已经多了客户再次上传的图片,但是你就想要最后的两张图片,这就可以使用到up ...

  2. redis入门指南-附录B

  3. java虚拟机学习-JVM调优总结-典型配置举例(10)

    以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...

  4. jmeter跨线程组传值

    在测试过程中,有时候需要jmeter跨线程组传值,jmeter本身又不具备此功能,那么,又该如何实现呢? 其实,我们可以通过BeanShell去实现. 实现过程如下: 1.线程组A中,使用正则表达式提 ...

  5. Find modern, interactive web-based charts for R at the htmlwidgets gallery

    While R's base graphics library is almost limitlessly flexible when it comes to create static graphi ...

  6. python爬虫从入门到放弃(八)之 Selenium库的使用

    一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...

  7. vue-cli项目中怎么mock数据

    在vue项目中, mock数据可以使用 node 的 express模块搭建服务 1. 在根目录下创建 test 目录, 用来存放模拟的 json 数据, 在 test 目录下创建模拟的数据 data ...

  8. IBM WebSphere ESB入门指南

    [TOC] 第一章 ESB介绍 本博客介绍一款ESB产品,IBM WebSphere ESB.ESB(Enterprise Service Bus)也即企业服务总线.ESB有很多产品,IBM的IBM ...

  9. RSA加密算法

    class Program { static void Main(string[] args) { RSAPublicKey P = new RSAPublicKey(); P.Exponent = ...

  10. OkHttp基本使用

    OkHttp介绍 Android系统提供了两种HTTP通信类,HttpURLConnection和HttpClient,HttpURLConnection相对来说比HttpClient难用,googl ...