Problem D

Dancing Digits

题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=112&page=show_problem&problem=2139

题目意思:

给你{1,2,3,4,5,6,7,8}的一个排列,其中每个数带负号或带正号,通过插入的方法将这些数按绝对值从小到大排序,输出插入的最小步数,如果不可能完成输出-1,能否插入的要求是:你要根据其余的一个数嵌入其左边或右边,这个数跟你要插入的数不同符号,且绝对值相加必须得是素数,所以根据一个数为中心你可以插入其左或其右。

解题思路:

#BFS+Hash# 哈希选择了康托展开,用队列存储每一个状态,且用visit[对应哈希值]表示是否已访问过。思路清晰 了就好办,主要是看状态转移的时候是怎样一个转移法,首先要顾及每一个数共需要两个for循环,把每两个数都判断一遍,判断的要求就是一正一负,绝对值相加是素数,然后还要分情况放左边还是右边,我花的时间主要是在写插入函数那里,具体思路看代码实现(画图找规律是王道啊)。一开始你得判断几个特殊情况。

 #include<iostream>
#include<string>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define MAXN 40322
#define SIZE 8
using namespace std; typedef int State[SIZE];
typedef struct Status{
State value;
}Status; queue<Status>queuing; int st[MAXN];
bool visit[MAXN];
bool Prime[*SIZE];
int factory[] = {, , , , , , , , };
int start = -;
int dir[] = {, -};
int input[SIZE]; void getPrime()
{//存储需要的素数
memset(Prime, false, sizeof(Prime));
for(int i=; i<*SIZE; ++i)
{
if(!Prime[i])
{
for(int j=i+i; j<*SIZE; j += i)
Prime[j] = true;
}
}
return;
} int try_to_insert(int s[])
{//返回对应的康托展开
int sum = ;
for(int i=; i<SIZE; ++i)
{
int cnt = ;
for(int j=i+; j<SIZE; ++j)
if(fabs(s[i])>fabs(s[j])) ++cnt;
sum += cnt*factory[SIZE-i-];
}
return sum;
} bool isExchange(int a, int b)
{//判断两个对应的数能否插入,可以返回true否则false if((a> && b<) || (a< && b>))
{
if(a>) b = -b;
else a = -a;
if(!Prime[a+b]) return true;
}
return false;
} void Translate(int s[], int to, int from, int kind)
{//插入的函数,kind = -1 表示from位置的数插入到to位置的左边,kind = 1 表示插入到to位置的右边
State p;
int temp_to = s[to], temp_from = s[from];
bool flag = false;
s[to] = s[from] = ;
if(kind == -)
{
for(int i=SIZE-, j=SIZE-; i>=; )
{
if(s[j] != ) p[i--] = s[j--];
else if(flag == false)
{
if(to > from)
{
p[i--] = temp_to;
p[i--] = temp_from;
}
j--;
flag = true;
}
else
{
if(to < from)
{
p[i--] = temp_to;
p[i--] = temp_from;
}
j--;
}
}
}
else
{
for(int i=, j=; i<SIZE; )
{
if(s[j] != ) p[i++] = s[j++];
else if(flag == false)
{
if(to < from)
{
p[i++] = temp_to;
p[i++] = temp_from;
}
j++;
flag = true;
}
else
{
if(to > from)
{
p[i++] = temp_to;
p[i++] = temp_from;
}
j++;
}
}
}
memcpy(s, p, sizeof(p));
return;
} bool Traverse()
{
memset(visit, false, sizeof(visit));
visit[start] = true;
st[start] = ;
Status init;
memcpy(init.value, input, sizeof(input));
queuing.push(init);
while(!queuing.empty())
{
Status ss = queuing.front();
State& s = ss.value;
int elem = try_to_insert(s);
queuing.pop();
//两个for循环加上两种插入的情况
for(int i=; i<SIZE; ++i)
{
for(int j=; j<SIZE; ++j)
{
if(isExchange(s[i], s[j]))
{
Status tt;
State& t = tt.value;
for(int z=; z<; ++z)
{
memcpy(t, s, sizeof(t));
if(i+dir[z] != j)
{
Translate(t, i, j, dir[z]);
int step = try_to_insert(t);
if(!visit[step])
{
visit[step] = true;
st[step] = st[elem]+;
queuing.push(tt);
if(step == )
{//step == 0 表示到达了已排序的状态则返回
return true;
}
}
}
}
}
}
}
}
return false;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("F:\\test\\input.txt", "r", stdin);
#endif
getPrime();
int T = ;
while(cin>>input[] && input[])
{
int flag = ;
if(input[] > ) flag++; for(int i=; i<SIZE; ++i)
{
cin>>input[i];
if(input[i] > ) flag++;
}
start = try_to_insert(input);
cout<<"Case "<<++T<<": ";
if (start == )
{
cout<<""<<endl;
continue;
}
if (flag == SIZE || !flag)
{
cout<<"-1"<<endl;
continue;
}
if(Traverse()) cout<<st[]<<endl;
else cout<<"-1"<<endl; while(!queuing.empty()) queuing.pop();
}
return ;
}

Uva 11198 - Dancing Digits的更多相关文章

  1. UVA 1341 - Different Digits(数论)

    UVA 1341 - Different Digits 题目链接 题意:给定一个正整数n.求一个kn使得kn上用的数字最少.假设同样,则输出值最小的 思路: 首先利用鸽笼原理证明最多须要2个数字去组成 ...

  2. UVa - 11452 - Dancing the Cheeky-Cheeky

    先上题目: F. Dancing the Cheeky-Cheeky  Context The Cheeky-Cheeky is a new song. They dance it in Mula, ...

  3. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  4. uva 993 Product of digits (贪心 + 分解因子)

      Product of digits  For a given non-negative integer number N , find the minimal natural Q such tha ...

  5. UVa 993: Product of digits

    这道题很简单.先将N用2,3,5,7(即10以内的素数)分解因数(需要先特殊判断N不为1),然后将可以合并的因数合并(如2*2合并成4,)这样求得的结果位数会减少,大小肯定会小一些.具体实现见代码. ...

  6. uva 10061 How many zero's and how many digits ?

    How many zeros and how many digits? Input: standard input Output: standard output Given a decimal in ...

  7. How many zero's and how many digits ? UVA - 10061

    Given a decimal integer number you will have to find out how many trailing zeros will be there in it ...

  8. UVA - 10061 How many zero&#39;s and how many digits ?

    n!=x*b^y, 当x为正整数时,最大的y就是n!末尾0的个数了, 把n,b分别拆成素因子相乘的形式: 比如, n=5,b=16 n=5,b=2^4, 非常明显,末尾0的个数为0 10进制时,n!= ...

  9. UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)

    题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k.  k暂时不用直接转成b进制. (1 ...

随机推荐

  1. jumplist和changlist

    用jumplist可以在不同的访问过的位置之间跳转 C-O到上一个 C-I到下一个位置 :jumps列出跳转列表 changlist列出最近的改动点 g;到上一个,g,到下一个 :changes列出相 ...

  2. sql partition by 的使用

    select a.bs_sn, a.bs_bd_no, a.bs_bk_code, a.bs_kind_no, a.bs_flag, b.det_flag, c.bp_in_no, c.bp_name ...

  3. 如何屏蔽LOGD\LOGI等打印输出

    今天被打印信息的去除困扰了,想了想,如果靠一个一个的改动未免太繁琐.因此就仔细的看了下这部分的打印原理.当然下面只是简单的进行了知识罗列不过有需要的朋友可以随便看看.说不准会有些收获呢. Includ ...

  4. css3 去掉点击高光(移动端)

    在我们用手机浏览网页时,当点击某个链接或者点击事件时 会出现一层蓝色半透明的高光显示, 但在开发webapp时,由于网页是被native load去的,在app里面点击的时候如果出现高光则显得很不和谐 ...

  5. BZOJ 2323 细胞(矩阵)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2323 题意: 题意过于复杂,我直接简化下.给出一个长度为n的数字串,只包含1到9,将数字 ...

  6. sdut 1728 编辑距离问题( dp )

    题目 思路:edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离. 有如下动态规划公式: if i == 0 且 j == 0,edit(i, j) = 0 ...

  7. Java注解实践

    Java注解实践 标签 : Java基础 注解对代码的语意没有直接影响, 他们只负责提供信息给相关的程序使用. 注解永远不会改变被注解代码的含义, 但可以通过工具对被注解的代码进行特殊处理. JDK ...

  8. LA 3510 (置换 循环分解) Pixel Shuffle

    思路挺简单的,题目中的每个命令(包括命令的逆)相当于一个置换. 用O(n2k)的时间复杂度从右往左求出这些置换的乘积A,然后求m使Am = I(I为全等置换) 还是先把A分解循环,m则等于所有循环节长 ...

  9. UVa 1658 (拆点法 最小费用流) Admiral

    题意: 给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小. 分析: 第一次听到“拆点法”这个名词. 把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的 ...

  10. android TextView多行文本(超过3行)使用ellipsize属性无效问题的解决方法

    这篇文章介绍了android TextView多行文本(超过3行)使用ellipsize属性无效问题的解决方法,有需要的朋友可以参考一下 布局文件中的TextView属性 复制代码代码如下: < ...