UVaLive 7374 Racing Gems (DP,LIS)
题意:以辆赛车可以从x轴上任意点出发,他的水平速度允许他向每向上移动v个单位,就能向左或向右移动v/r个单位(也就是它的辐射范围是个等腰三角形)
现在赛车从x轴出发,问它在到达终点前能吃到的最多钻石。
析:那个v是怎么变那个是不变的。比例考虑每个钻石的向下辐射范围,并且将其投影到x轴上的两个点,(辐射范围与x轴的两个焦点),然后我们就把题目转化成了一个区间覆盖问题,
我们可以在每一个钻石求出一个覆盖范围,什么意思呢,既然水平速度 向左的最大值等于向右的最大值,那么肯定是一个等腰三角形了,只需要求出所有钻石在X轴上所有覆盖范围,求出
有多少个完全覆盖的钻石就是答案!
我们用x<y表示x区间被y区间覆盖,即求二维最长的上升子序列:a1<=a2<=...<=an。
我们按每个钻石的左端点排序,然后跑右端点的最长不下降子序列就可以了。由于数据比较大,用二分处理成nlogn的复杂度。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <functional>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <deque>
#include <map>
#include <cctype>
#include <stack>
#include <sstream>
#include <cstdlib>
using namespace std ;
#include <ctime> typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
struct node{
LL x, y;
bool operator < (const node &p)const{
return x > p.x || (x == p.x && y < p.y);
}
};
node a[maxn];
LL dp[maxn]; int DP(){
fill(dp, dp+n, LNF);
for(int i = 0; i < n; ++i)
*upper_bound(dp, dp+n, a[i].y) = a[i].y;
return lower_bound(dp, dp+n, LNF) - dp;
} int main(){
int r, h, w;
while(scanf("%d %d %d %d", &n, &r, &w, &h) == 4){
for(int i = 0; i < n; ++i){
LL x, y;
scanf("%lld %lld", &x, &y);
a[i].x = r * x - y;
a[i].y = r * x + y;
}
sort(a, a+n);
int ans = DP();
printf("%d\n", ans);
}
return 0;
}
UVaLive 7374 Racing Gems (DP,LIS)的更多相关文章
- UVALive - 7374 Racing Gems 二维非递减子序列
题目链接: http://acm.hust.edu.cn/vjudge/problem/356795 Racing Gems Time Limit: 3000MS 问题描述 You are playi ...
- POJ 3671 Dining Cows (DP,LIS, 暴力)
题意:给定 n 个数,让你修改最少的数,使得这是一个不下降序列. 析:和3670一思路,就是一个LIS,也可以直接暴力,因为只有两个数,所以可以枚举在哪分界,左边是1,右边是2,更新答案. 代码如下: ...
- POJ 3670 Eating Together (DP,LIS)
题意:给定 n 个数,让你修改最少的数,使得它变成一个不下降或者不上升序列. 析:这个就是一个LIS,但是当时并没有看出来...只要求出最长LIS的长度,用总数减去就是答案. 代码如下: #inclu ...
- 洛谷 1020:导弹拦截(DP,LIS)
题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...
- UVa 111 History Grading (简单DP,LIS或LCS)
题意:题意就是坑,看不大懂么,结果就做不对,如果看懂了就so easy了,给定n个事件,注意的是, 它给的是第i个事件发生在第多少位,并不是像我们想的,第i位是哪个事件,举个例子吧,4 2 3 1, ...
- HDU-1160-FatMouse's Speed(线性DP,LIS)
FatMouse's Speed Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- UVALive 4987 EvacuationPlan(dp,贪心)
在所有避难所都有至少一只队伍的情况,总移动距离最小. 把队伍的位置和人都排序. 会发现,对于最后一个队伍i和最后一个避难所j, Case 1:pos[j]>=pos[i],那么i是距离j最近的一 ...
- Luogu-P1020(导弹拦截)(DP,LIS ,二分优化)
Luogu-P1020(导弹拦截)(DP) 题意: 给n(n<=100000) 个数字,求最长不上升子序列的长度和最少的不上升子序列的个数. 分析: 第一问: 求最长不上升子序列有 O(n^2) ...
- 洛谷 P1439 【模板】最长公共子序列(DP,LIS?)
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...
随机推荐
- android完全退出应用程序
android 完全退出应用程序android android 退出应用程序, 单例模式管理Activity引自:http://www.yoyong.com/archives/199android 退 ...
- Asp.Net连接Mysql报错Out of sync with server
Asp.Net连接Mysql报错Out of sync with server 原因:程序引用的MySql.Data.dll版本高于服务器版本 解决:下载一个低版本的MySql.Data.dll,项目 ...
- Asp.net 后台添加Meta标签方法
Asp.net 后台添加Meta标签方法包括keywords,CSS.JS 下面是从Asp.net 后台添加CSS.JS.Meta标签的写法,我们这里写成函数方便以后使用.如果函数放在页面类中, Pa ...
- UVALive 4287 Proving Equivalences(缩点)
等价性问题,给出的样例为 a->b的形式,问要实现全部等价(即任意两个可以互相推出),至少要加多少个形如 a->b的条件. 容易想到用强连通缩点,把已经实现等价的子图缩掉,最后剩余DAG. ...
- dialog组件
/** * @description Mask 弹层 * @function * @name Mask * @param {Object} options 配置项 */ var passport = ...
- h.264码流解析_一个SPS的nalu及获取视频的分辨率
00 00 00 01 67 42 00 28 E9 00 A0 0B 77 FE 00 02 00 03 C4 80 00 00 03 00 80 00 00 1A 4D 88 10 94 0 ...
- poj 1392 Ouroboros Snake
题目描述:咬尾蛇是古埃及神话中一种虚构的蛇.它经常把尾巴放在自己的嘴巴里,不停地吞噬自己.环数类似于咬尾蛇,它是2^n位的二进制数,具有如下性质:它能“生成”0-2^n-1之间的所有数.生成方法是:给 ...
- Vagrant搭建Ubuntu-JavaEE开发环境——Tomcat+JDK+MySQL+dubbo+测试
Vagrant搭建(Tomcat8+JDK7+MySQL5+dubbo) JDK 1.下载jdk 2.解压JDK tar -xzvf jdk-7u79-linux-x64.tar.gz 3.设置环境变 ...
- 如何使用 orachk 工具
Oracle RAC 安装完毕后的健壮性是一个令人头疼的问题.之前Oracle为之专门推出了raccheck工具,确实方便了我们这些个苦逼的DBA.现在Oracle在raccheck的基础之上又推出了 ...
- mysql使用经验总结
在工作中难免会遇到一些这个问题那个问题,当然在mysql中也不例外.今天就让我们来学学mysql中一些比较常用的东西 . 1.有时我们想去查某张表中的字段,但是表中的数据多,字段也很多,如果用sel ...