Columbus’s bargain

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1721    Accepted Submission(s):
431

Problem Description
On the evening of 3 August 1492, Christopher Columbus
departed from Palos de la Frontera with a few ships, starting a serious of
voyages of finding a new route to India. As you know, just in those voyages,
Columbus discovered the America continent which he thought was
India.

Because the ships are not large enough and there are seldom
harbors in his route, Columbus had to buy food and other necessary things from
savages. Gold coins were the most popular currency in the world at that time and
savages also accept them. Columbus wanted to buy N kinds of goods from savages,
and each kind of goods has a price in gold coins. Columbus brought enough glass
beads with him, because he knew that for savages, a glass bead is as valuable as
a gold coin. Columbus could buy an item he need only in four ways
below:

1.  Pay the price all by gold coins.
2.  Pay by ONE glass bead
and some gold coins. In this way, if an item’s price is k gold coins, Columbus
could just pay k – 1 gold coins and one glass bead.
3.  Pay by an item which
has the same price.
4.  Pay by a cheaper item and some gold coins.

Columbus found out an interesting thing in the trade rule of savages:
For some kinds of goods, when the buyer wanted to buy an item by paying a
cheaper item and some gold coins, he didn’t have to pay the price difference, he
can pay less. If one could buy an item of kind A by paying a cheaper item of
kind B plus some gold coins less than the price difference between B and A,
Columbus called that there was a “bargain” between kind B and kind A. To get an
item, Columbus didn’t have to spend gold coins as many as its price because he
could use glass beads or took full advantages of “bargains”. So Columbus wanted
to know, for any kind of goods, at least how many gold coins he had to spend in
order to get one – Columbus called it “actual price” of that kind of goods.

Just for curiosity, Columbus also wanted to know, how many kinds of
goods are there whose “actual price” was equal to the sum of “actual price” of
other two kinds.

 
Input
There are several test cases.
The first line in the
input is an integer T indicating the number of test cases ( 0 < T <=
10).
For each test case:
The first line contains an integer N, meaning
there are N kinds of goods ( 0 < N <= 20). These N kinds are numbered from
1 to N.

Then N lines follow, each contains two integers Q and P, meaning
that the price of the goods of kind Q is P. ( 0 <Q <=N, 0 < P <= 30
)
The next line is a integer M( 0 < M <= 20 ), meaning there are M
“bargains”.

Then M lines follow, each contains three integers N1, N2 and
R, meaning that you can get an item of kind N2 by paying an item of kind N1 plus
R gold coins. It’s guaranteed that the goods of kind N1 is cheaper than the
goods of kind N2 and R is none negative and less than the price difference
between the goods of kind N2 and kind N1. Please note that R could be zero.

 
Output
For each test case:
Please output N lines at first.
Each line contains two integers n and p, meaning that the “actual price” of the
goods of kind n is p gold coins. These N lines should be in the ascending order
of kind No. .

Then output a line containing an integer m, indicating
that there are m kinds of goods whose “actual price” is equal to the sum of
“actual price” of other two kinds.

 
Sample Input
1
4
1 4
2 9
3 5
4 13
2
1 2 3
3 4 6
 
 
Sample Output
1 3
2 6
3 4
4 10
1
 
 
Source
 
 
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int ms=;
const int inf=0xffffff;
struct edge
{
int u,v,w,next;
}edges[ms*ms];
int head[ms],price[ms],dis[ms],cnt,n,m;
bool vis[ms];
void add_edge(int u,int v,int w)
{
edges[cnt].u=u;
edges[cnt].v=v;
edges[cnt].w=w;
edges[cnt].next=head[u];
head[u]=cnt++;
return ;
} void input()
{
int i,j,id,pri;
memset(vis,false,sizeof(vis));
memset(head,-,sizeof(head));
fill(dis,dis+ms,inf);
cnt=;
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d %d",&id,&pri);
price[id]=pri;
add_edge(,id,pri-);
}
for(i=;i<=n;i++)
for(j=i+;j<=n;j++)
if(price[i]==price[j])
{ add_edge(i,j,);
add_edge(j,i,);
}
scanf("%d",&m);
while(m--)
{
scanf("%d %d %d",&i,&j,&pri);
add_edge(i,j,pri);
}
return ;
}
void spfa()
{
int i,s=,to;
queue<int> que;
dis[s]=;
que.push(s);
vis[s]=true;
while(!que.empty())
{
// s=que.top(); 栈
s=que.front();
que.pop();
for(i=head[s];i!=-;i=edges[i].next)
{
to=edges[i].v;
if(dis[to]>dis[s]+edges[i].w)
{
dis[to]=dis[s]+edges[i].w;
if(!vis[to])
{
vis[to]=true;
que.push(to);
}
}
}
vis[s]=false;
}
return ;
}
void solve()
{
int i,j,k,ans=;
spfa();
for(i=;i<=n;i++)
printf("%d %d\n",i,dis[i]);
bool flag;
for(i=;i<=n;i++)
for(flag=true,j=;j<=n&&flag;j++)
for(k=j+;k<=n&&flag;k++)
if(i!=j&&i!=k)
{
if(dis[i]==dis[j]+dis[k])
{
ans++;
flag=false;
}
}
printf("%d\n",ans);
return ;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
input();
solve();
}
return ;
}

Columbus’s bargain的更多相关文章

  1. POJ 3835 &amp; HDU 3268 Columbus’s bargain(最短路 Spfa)

    题目链接: POJ:http://poj.org/problem?id=3835 HDU:http://acm.hdu.edu.cn/showproblem.php?pid=3268 Problem ...

  2. hdu 3268 09 宁波 现场 I - Columbus’s bargain 读题 最短路 难度:1

    Description On the evening of 3 August 1492, Christopher Columbus departed from Palos de la Frontera ...

  3. HDU 3268/POJ 3835 Columbus’s bargain(最短路径+暴力枚举)(2009 Asia Ningbo Regional)

    Description On the evening of 3 August 1492, Christopher Columbus departed from Palos de la Frontera ...

  4. <老友记>学习笔记

    这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的 ...

  5. python瓦登尔湖词频统计

    #瓦登尔湖词频统计: import string path = 'D:/python3/Walden.txt' with open(path,'r',encoding= 'utf-8') as tex ...

  6. 读书笔记--SQL必知必会09--汇总数据

    9.1 聚集函数 聚集函数(aggregate function),对某些行运行的函数,计算并返回一个值. 使用聚集函数可以汇总数据而不必将涉及的数据实际检索出来. 可利用标准的算术操作符,实现更高级 ...

  7. 读书笔记--SQL必知必会11--使用子查询

    11.1 子查询 查询(query),任何SQL语句都是查询.但此术语一般指SELECT语句. SQL还允许创建子查询(subquery),即嵌套在其他查询中的查询. 作为子查询的SELECT语句只能 ...

  8. 读书笔记--SQL必知必会15--插入数据

    15.1 数据插入 使用INSERT语句将行插入(或添加)到数据库表.可能需要特定的安全权限. 插入完整的行 插入行的一部分 插入某些查询的结果 15.1.1 插入完整的行 要求指定表名和插入到新行中 ...

  9. 读书笔记--SQL必知必会16--更新和删除数据

    16.1 更新数据 使用UPDATE语句更新或修改表中的数据.必须有足够的安全权限. 更新表中的特定行 更新表中的所有行 使用UPDATE时一定要细心,不要省略WHERE子句. SET命令用来将新值赋 ...

随机推荐

  1. mapreduce的调度算法和job调优

    调度算法: mapreduce当有很多的作业在执行的时候,是按照什么顺序去执行的? 调度算法顺序需要关注: 1.提高作业的吞吐量. 2.要考虑优先级. 三种调度器:如果作业跑不完,并且机器资源利用率比 ...

  2. SCAU 1138 代码等式

    1138 代码等式 时间限制:500MS  内存限制:65536K提交次数:59 通过次数:21 题型: 编程题   语言: 无限制 Description 一个代码等式就是形如x1x2...xi=y ...

  3. Cognos 增加全局类

    Cognos使用版本10.1.1 由于我服务器装的是linux系统下的,所以window系统下的方法,提一下,但是没有实现过. 1.Linux系统下增加全局类 ●修改GlobalReportStyle ...

  4. mongod的主要参数解释

    mongod的主要参数有:

  5. Oracle DB 执行用户管理的备份和恢复

    • 说明用户管理的备份和恢复与服务器管理的备份和恢复 之间的差异 • 执行用户管理的数据库完全恢复 • 执行用户管理的数据库不完全恢复 备份和恢复的使用类型 数据库备份和恢复的类型包括: • 用户管理 ...

  6. Unity3D之UGUI学习笔记(二):Rect Transform与Anchor

    Rect Transform 我们都知道,Unity3D中所有的GameObject都必须要携带一个Transform组件,且该组件无法移除,那么作为UI显示的GameObject则不是携带Trans ...

  7. C#学习笔记(十一):动态类型

    C#是一门静态类型的语言,但是在C#4.0时微软引入了动态类型的概念. dynamic 关键字dynamic用来定义动态对象,我们来看一下动态类型的一些特性. 调用不同类的相同方法 我们有两个或多个不 ...

  8. 用C#调用蓝牙编程

    2013-04-22 09:41:06 什么是蓝牙? 现在只能手机这么发达,蓝牙对我们来说肯定不陌生.我来介绍一下官方概念: 蓝牙,是一种支持设备短距离通信(一般10m内)的无线电技术.能在包括移动电 ...

  9. Java NIO和IO的主要区别

    From :http://blog.csdn.net/keda8997110/article/details/19549493 下表总结了Java NIO和IO之间的主要差别,我会更详细地描述表中每部 ...

  10. 百度地图 >> 自定义控件

    前言 百度地图API中预定义的UI控件,比如NavigationControl平移缩放控件,CopyrightControl版权控件,MapTypeControl地图类型控件....,这些都继承自抽象 ...