Crashing Robots

Description
In a modernized warehouse, robots are used to fetch the goods. Careful planning is needed to ensure that the robots reach their destinations without crashing into each other. Of course, all warehouses are rectangular, and all robots occupy a circular floor space with a diameter of 1 meter. Assume there are N robots, numbered from 1 through N. You will get to know the position and orientation of each robot, and all the instructions, which are carefully (and mindlessly) followed by the robots. Instructions are processed in the order they come. No two robots move simultaneously; a robot always completes its move before the next one starts moving.
A robot crashes with a wall if it attempts to move outside the area of the warehouse, and two robots crash with each other if they ever try to occupy the same spot.


Input
The first line of input is K, the number of test cases. Each test case starts with one line consisting of two integers, 1 <= A, B <= 100, giving the size of the warehouse in meters. A is the length in the EW-direction, and B in the NS-direction.
The second line contains two integers, 1 <= N, M <= 100, denoting the numbers of robots and instructions respectively.
Then follow N lines with two integers, 1 <= Xi <= A, 1 <= Yi <= B and one letter (N, S, E or W), giving the starting position and direction of each robot, in order from 1 through N. No two robots start at the same position.
Figure 1: The starting positions of the robots in the sample warehouse
Finally there are M lines, giving the instructions in sequential order.
An instruction has the following format:
< robot #> < action> < repeat>
Where is one of
L: turn left 90 degrees,
R: turn right 90 degrees, or
F: move forward one meter,
and 1 <= < repeat> <= 100 is the number of times the robot should perform this single move.
Output
Output one line for each test case:
Robot i crashes into the wall, if robot i crashes into a wall. (A robot crashes into a wall if Xi = 0, Xi = A + 1, Yi = 0 or Yi = B + 1.)
Robot i crashes into robot j, if robots i and j crash, and i is the moving robot.
OK, if no crashing occurs.
Only the first crash is to be reported.
Sample Input
4
5 4
2 2
1 1 E
5 4 W
1 F 7
2 F 7
5 4
2 4
1 1 E
5 4 W
1 F 3
2 F 1
1 L 1
1 F 3
5 4
2 2
1 1 E
5 4 W
1 L 96
1 F 2
5 4
2 3
1 1 E
5 4 W
1 F 4
1 L 1
1 F 20
Sample Output
Robot 1 crashes into the wall
Robot 1 crashes into robot 2
OK
Robot 1 crashes into robot 2

题目大意:给定一个A*B的棋盘,N个机器人,每个机器人都有起始位置,M个指令(x,C,r)代表第x个机器人执行指令C重复r次。
    F->向前走一步
    L->向左转
    R->向右转

    若i号机器人撞墙,输出:Robot i crashes into the wall
    若i号机器人撞到j号机器人,输出:Robot i crashes into robot j
    若M个指令执行完仍无事故发生 输出:OK

解题思路:模拟,写的比较长。。。

Code:

 #include<string>
#include<iostream>
#include<stdio.h>
#define INTO_WALL 0
#define INTO_ROBIT -1
#define SAFE 1
using namespace std;
struct Robit
{
int x,y;
int dir;
} R[];
int date1,date2,N,T,M,A,B;;
void step(int i,int dir)
{
if (dir==) R[i].y++;
if (dir==) R[i].x++;
if (dir==) R[i].y--;
if (dir==) R[i].x--;
}
int move(int i,char dir,int dis)
{
if (dir=='L')
for (int j=; j<=dis; j++)
R[i].dir=(R[i].dir-)?(R[i].dir-):;
else if (dir=='R')
for (int j=; j<=dis; j++)
R[i].dir=(R[i].dir-)?(R[i].dir+):;
else
{
for (int j=; j<=dis; j++)
{
step(i,R[i].dir);
if ((R[i].x>=A+||R[i].x<=)||(R[i].y>=B+||R[i].y<=))
{
date1=i;
return INTO_WALL;
}
for (int k=; k<=N; k++)
{
if (k==i) continue;
if (R[k].x==R[i].x&&R[k].y==R[i].y)
{
date1=i,date2=k;
return INTO_ROBIT;
}
}
}
}
return SAFE;
}
int main()
{
int flag=,tmp,meter,ok,i;
char tdir,ctmp;
cin>>T;
while (T--)
{
flag=;
cin>>A>>B;
cin>>N>>M;
for (i=; i<=N; i++)
{
cin>>R[i].x>>R[i].y>>ctmp;
if (ctmp=='N') R[i].dir=;
if (ctmp=='E') R[i].dir=;
if (ctmp=='S') R[i].dir=;
if (ctmp=='W') R[i].dir=;
}
for (i=; i<=M; i++)
{
cin>>tmp>>tdir>>meter;
if (flag) continue;
ok=move(tmp,tdir,meter);
if (ok==SAFE) continue;
else if (ok==INTO_ROBIT)
{
printf("Robot %d crashes into robot %d\n",date1,date2);
flag=;
}
else if (ok==INTO_WALL)
{
printf("Robot %d crashes into the wall\n",date1);
flag=;
}
}
if (!flag) printf("OK\n");
}
return ;
}

POJ2632——Crashing Robots的更多相关文章

  1. poj2632 Crashing Robots

    Crashing Robots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9859   Accepted: 4209 D ...

  2. POJ2632 Crashing Robots 解题报告

    Description In a modernized warehouse, robots are used to fetch the goods. Careful planning is neede ...

  3. POJ2632 Crashing Robots(模拟)

    题目链接. 分析: 虽说是简单的模拟,却调试了很长时间. 调试这么长时间总结来的经验: 1.坐标系要和题目建的一样,要不就会有各种麻烦. 2.在向前移动过程中碰到其他的机器人也不行,这个题目说啦:a ...

  4. POJ-2632 Crashing Robots模拟

    题目链接: https://vjudge.net/problem/POJ-2632 题目大意: 在一个a×b的仓库里有n个机器人,编号为1到n.现在给出每一个机器人的坐标和它所面朝的方向,以及m条指令 ...

  5. Crashing Robots(imitate)

    Crashing Robots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8124   Accepted: 3528 D ...

  6. 模拟 POJ 2632 Crashing Robots

    题目地址:http://poj.org/problem?id=2632 /* 题意:几个机器人按照指示,逐个朝某个(指定)方向的直走,如果走过的路上有机器人则输出谁撞到:如果走出界了,输出谁出界 如果 ...

  7. Crashing Robots 分类: POJ 2015-06-29 11:44 10人阅读 评论(0) 收藏

    Crashing Robots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8340   Accepted: 3607 D ...

  8. poj 2632 Crashing Robots

    点击打开链接 Crashing Robots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6655   Accepted: ...

  9. Poj OpenJudge 百练 2632 Crashing Robots

    1.Link: http://poj.org/problem?id=2632 http://bailian.openjudge.cn/practice/2632/ 2.Content: Crashin ...

随机推荐

  1. Ubuntu 14.04下java开发环境的搭建--2--Eclipse的安装

    前面说了JDK的安装,http://www.cnblogs.com/bcsflilong/p/4196536.html 下面我们来安装Eclipse! 安装Eclipse 的前提是,你的JDK已经安装 ...

  2. 一本JavaEE的案例书

    案例很好.1.网上书店 2.AJAX网页聊天

  3. 如何在PowerDesigner将PDM导出生成WORD文档或者html文件

    a)         使用PowerDesigner打开pdm文件 b)         点击Report Temlates 制作模板 点击PowerDesigner菜单栏“Report” -> ...

  4. js数字格式化-四舍五入精简版

    搜索网上的,数字格式化过余复杂,自己想了个简单方法,欢迎吐槽. 简化说明: '123333' => 12.3万 parseInt('123333') 字符串转整型 parseInt('12333 ...

  5. php入门引言

    php开发者要具备的一些要求: [1]html常用标签的基础知识 [2]html+css布局的基础知识 [3]了解php开发环境 [4]了解php标签和扩展名 1.php标签是撒??? <?ph ...

  6. 再次学习C++类之构造函数

    学习C++类,首先要说C中的结构体,虽然C++类扩展了C中的结构体,可以添加成员函数,但他们是有区别的.在结构体中,成员变量.成员函数都是公有的,而类中,一般是成员变量是私有的,成员函数是公有的,私有 ...

  7. Linux中Kill进程的N种方法

    常规篇: 首先,用ps查看进程,方法如下: $ ps -ef …… smx       1822     1  0 11:38 ?        00:00:49 gnome-terminal smx ...

  8. MySQL的复制原理及配置

    MySQL 的数据库的高可用性的架构大概有以下几种:集群,读写分离,主备.而后面两种都是通过复制来实现的.下面将简单介绍复制的原理及配置,以及一些常见的问题. 一.复制的原理 MySQL 复制基于主服 ...

  9. C#.Net EF实体框架入门视频教程

    当前位置: 主页 > 编程开发 > C_VC视频教程 > C#.Net EF实体框架入门视频教程 > kingstone金士顿手机内存卡16G仅65元 1.EF实体框架之增加查 ...

  10. angular service/directive

    <html class=" js cssanimations csstransitions" ng-app="phonecatApp" > < ...