阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
关于:
- 首次发表日期:2024-07-18
- Mathematics for Machine Learning官方链接: https://mml-book.com
- ChatGPT和KIMI机翻,人工润色
- 非数学专业,如有错误,请不吝指出
2.5 线性无关( Linear Independence)
接下来,我们将仔细看看如何操作向量(向量空间的元素)。特别是,我们可以将向量相加并用标量相乘。闭合性(closure property)保证了我们最终得到的还是同一向量空间中的另一个向量。我们可以找到一组(set)向量,通过相加和缩放这些向量,我们可以表示向量空间中的每一个向量。这组向量称为基(base),我们将在第2.6.1节讨论它们。在此之前,我们需要介绍线性组合和线性无关的概念。
定义 2.11(线性组合)。考虑一个向量空间 \(V\) 和有限数量的向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\)。那么,每一个 \(\boldsymbol{v} \in V\) 形式如下的向量
\tag{2.65}
\]
其中 \(\lambda_1, \ldots, \lambda_k \in \mathbb{R}\) 是向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合。
零向量 \(\mathbf{0}\) 总是可以写成 \(k\) 个向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合,因为 \(\mathbf{0}=\sum_{i=1}^k 0 \boldsymbol{x}_i\) 总是成立的。接下来,我们对一组向量的非平凡(non-trivial)线性组合表示 \(\mathbf{0}\) 感兴趣,即向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合,其中不是所有系数 \(\lambda_i\) 在 (2.65) 中都为 0。
定义 2.12(线性(不)相关性)。让我们考虑一个向量空间 \(V\) 以及 \(k \in \mathbb{N}\) 和 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\)。如果存在一个非平凡的线性组合,使得 \(\mathbf{0}=\sum_{i=1}^k \lambda_i \boldsymbol{x}_i\) 且至少有一个 \(\lambda_i \neq 0\),则向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 是线性相关的。如果只存在零解,即 \(\lambda_1=\ldots=\lambda_k=0\),则向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 是线性无关的。
线性无关是线性代数中最重要的概念之一。直观上,一组线性无关的向量由没有冗余的向量组成,即,如果我们从集合中移除任何一个向量,我们将失去一些东西。在接下来的章节中,我们将更正式地讨论这一直觉。
注释 以下性质对于判断向量是否线性无关是有用的:
\(k\) 个向量要么线性相关,要么线性无关,没有第三种可能。
如果向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 中至少有一个是零向量 \(\mathbf{0}\),那么它们是线性相关的。如果有两个向量相同,也成立。
向量 \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\}, k \geqslant 2\) 是线性相关的,当且仅当(至少)其中一个是其他向量的线性组合。特别地,如果一个向量是另一个向量的倍数,即 \(\boldsymbol{x}_i=\lambda \boldsymbol{x}_j, \lambda \in \mathbb{R}\),那么集合 \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\}\) 是线性相关的。
检查向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\) 是否线性无关的一种实用方法是使用高斯消元法:将所有向量作为矩阵 \(\boldsymbol{A}\) 的列,并进行高斯消元,直到矩阵处于行阶梯形态(这里不需要行简化阶梯形态(reduced row-echelon form)):
- 枢轴列(pivot columns)表示与其左边的向量线性无关的向量。注意,在构建矩阵时向量是有顺序的。
- 非枢轴列可以表示为左边枢轴列的线性组合。例如,行阶梯形态
\[\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
\]告诉我们第一列和第三列是枢轴列。第二列是非枢轴列,因为它是第一列的三倍。
所有列向量是线性无关的当且仅当所有列都是枢轴列。如果至少有一个非枢轴列,则这些列(因此,相应的向量)是线性相关的。
注释 考虑一个向量空间 \(V\),其中有 \(k\) 个线性无关的向量 \(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\) 和 \(m\) 个线性组合
\boldsymbol{x}_1=\sum_{i=1}^k \lambda_{i1} \boldsymbol{b}_i, \\
\vdots \\
\boldsymbol{x}_m=\sum_{i=1}^k \lambda_{im} \boldsymbol{b}_i .
\end{gathered}
\tag{2.7.0}
\]
定义 \(\boldsymbol{B}=\left[\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\right]\) 为一个矩阵,其列是线性无关的向量 \(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\),我们可以更紧凑地写成
\boldsymbol{x}_j=\boldsymbol{B} \boldsymbol{\lambda}_j, \quad \boldsymbol{\lambda}_j=\left[\begin{array}{c}
\lambda_{1j} \\
\vdots \\
\lambda_{kj}
\end{array}\right], \quad j=1, \ldots, m,\\
\end{gathered}
\tag{2.7.1}
\]
我们想要检验 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\) 是否线性无关。为此,我们遵循检验 \(\sum_{j=1}^m \psi_j \boldsymbol{x}_j=\mathbf{0}\) 的一般方法。通过 (2.71),我们得到
\tag{2.7.2}
\]
这意味着当且仅当列向量 \(\left\{\boldsymbol{\lambda}_1, \ldots, \boldsymbol{\lambda}_m\right\}\) 是线性无关的, \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\right\}\) 是线性无关的。
注释:在一个向量空间 \(V\) 中,\(m\) 个由 \(k\) 个向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 线性组合而成的向量是线性相关的,如果 \(m>k\)。
阅读翻译Mathematics for Machine Learning之2.5 Linear Independence的更多相关文章
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- machine learning(14) --Regularization:Regularized linear regression
machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...
- Note for video Machine Learning and Data Mining——Linear Model
Here is the note for lecture three. the linear model Linear model is a basic and important model in ...
- Machine Learning - week 2 - Multivariate Linear Regression
Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...
- Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...
- 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(1):二阶与三阶行列式、全排列及其逆序数
@ 目录 前言 二阶与三阶行列式 二阶行列式 三阶行列式 全排列及其逆序数 全排列 逆序数 结语 前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 自我介绍 ...
- Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)
一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...
- [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
随机推荐
- AIRIOT智慧变电站管理解决方案
随着社会电气化进程的加速,电力需求与日俱增,变电站作为电网的关键节点,其稳定性和智能化管理水平直接关系到整个电力系统的高效运作.传统变电站管理平台难以适应现代电力系统复杂管理需求,存在如下痛点: 数据 ...
- android studio 安装与配置
android studio 下载地址:http://www.android-studio.org/ 找一个存储空间,我在D盘上,建好如下目录 : 找到刚才在载的文件 android-stu ...
- .NetCore 3.1 教程之 EFCore连接Mysql DBFirst模式 从数据库生成实体
一:创建EF的类库,同时将此项目设置为启动项(为Scaffold-DbContext -tables指令使用),同时安装2个包 ①Microsoft.EntityFrameworkCore.Too ...
- Linux和Windows时间不一致问题
问题描述 装过双系统或者虚拟机装Linux的人都知道,Linux的时间和Windows往往是不同步的,在编写跨平台程序的时候特别是对时间敏感的代码就带来很大的困扰 解决办法 这个问题可以在Linux下 ...
- 8.9考试总结(NOIP模拟34)[Merchant·Equation·Rectangle]
一个人有表里两面,你能看到的,仅仅是其中一面而已. 今日已成往昔,明日即将到来,为此理所当然之事,感到无比痛心. T1 Merchant 解题思路 我和正解也许就是差了一个函数(我格局小了..) nt ...
- proteus 器件名称被软件篡改bug的解决方案
proteus v7.8 器件名称被软件篡改bug 的解决方案 BUG描述 在做单片机实验时,发现从某一个时间保存的设计图文件开始,在添加新的电子元件时会出现部分旧元件的名称被捆绑替换为新元件的名称, ...
- 算法学习笔记(35): CMD Tree
对于 CMD Tree 的理解 原文:# 一种轻量级平衡树 这,EXSGT,感觉很像支持分裂 WBLT,但是相对来说思路很简单. 首先,在原文中说了: 能以均摊 \(\Theta(\log n)\) ...
- 开源高性能结构化日志模块NanoLog
最近在写数据库程序,需要一个高性能的结构化日志记录组件,简单研究了一下Microsoft.Extensions.Logging和Serilog,还是决定重造一个轮子. 一.使用方法 直接参考以 ...
- 在.NET Core,除了VB的LikeString,还有其它方法吗?(四种LikeString实现分享)
Like运算符很好用,特别是它所提供的其中*.?这两种通配符,在Windows文件系统和各类项目中运用非常广泛. 但Like运算符仅在VB中支持,在C#中,如何实现呢? 以下是关于LikeString ...
- 项目管理--PMBOK 读书笔记(5)【项目范围管理】
知识点: 1.范围管理计划与需求管理计划: 需求大于范围 2.项目管理的成果线: 3.收集需求的跟踪: 需求跟踪矩阵(RTM):溯源.商业价值.监控过程输出 4.项目范围说 ...