线性回归 Linear Regression
成本函数(cost function)也叫损失函数(loss function),用来定义模型与观测值的误差。模型预测的价格与训练集数据的差异称为残差(residuals)或训练误差(test errors)。
我们可以通过残差之和最小化实现最佳拟合,也就是说模型预测的值与训练集的数据最接近就是最佳拟合。对模型的拟合度进行评估的函数称为残差平方和(residual sum of squares)成本函数。就是让所有训练数据与模型的残差的平方之和最小。
我们用R方(r-squared)评估预测的效果。R方也叫确定系数(coefficient of determination),表示模型对现实数据拟合的程度。计算R方的方法有几种。一元线性回归中R方等于皮尔逊积矩相关系数(Pearson product moment correlation coefficient 或Pearson's r)的平方。这种方法计算的R方一定介于0~1之间的正数。其他计算方法,包括scikit-learn中的方法,不是用皮尔逊积矩相关系数的平方计算的,因此当模型拟合效果很差的时候R方会是负值。
SStot是方差平方和 SSres是残差的平方和
一元线性回归
X_test = [[8], [9], [11], [16], [12]]
y_test = [[11], [8.5], [15], [18], [11]]
model = LinearRegression()
model.fit(X, y)
model.score(X_test, y_test)
score方法计算R方
多元线性回归
最小二乘的代码
from numpy.linalg import lstsq
print(lstsq(X, y)[0])
多项式回归
一种特殊的多元线性回归方法,增加了指数项(x 的次数大于1)。现实世界中的曲线关系都是通过增加多项式实现的,其实现方式和多元线性回归类似。
\(f(x)=\alpha x^2+\beta_1 x+\beta_2\)
多项式 函数PolynomialFeatures
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6], [8], [10], [14], [18]]
y_train = [[7], [9], [13], [17.5], [18]]
X_test = [[6], [8], [11], [16]]
y_test = [[8], [12], [15], [18]]
regressor = LinearRegression()
regressor.fit(X_train, y_train)
xx = np.linspace(0, 26, 100)
yy = regressor.predict(xx.reshape(xx.shape[0], 1))
plt = LRplt.runplt()
plt.plot(X_train, y_train, 'k.')
plt.plot(xx, yy)
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test)
regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic, y_train)
xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-')
plt.show()
print(X_train)
print(X_train_quadratic)
print(X_test)
print(X_test_quadratic)
print '一元线性回归 r-squared', regressor.score(X_test, y_test)
print '二次回归 r-squared', regressor_quadratic.score(X_test_quadratic, y_test)
多项式比一次的R值更高,效果好一些。
正则化
正则化(Regularization)是用来防止拟合过度的方法。正则化就是用最简单的模型解释数据。(奥卡姆剃刀原理(Occam's razor))
岭回归(Ridge Regression)岭回归增加L2范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)
\(R = \sum_{i=1}^{n} ( y_i - x_i^T \beta)^2 +\lambda \sum_{j=1}^{p}\beta_j^2\)
最小收缩和选择算子(Least absolute shrinkage and selection operator,LASSO),增加L1范数项(相关系数向量平方和的平方根)来调整成本函数(残差平方和)
\(R=\sum_{i=1}^{n}( y_i - x_i^T \beta)^2 +\lambda\sum_{j=1}^{p}\beta_j\)
LASSO方法会产生稀疏参数,大多数相关系数会变成0,模型只会保留一小部分特征。而岭回归还是会保留大多数尽可能小的相关系数。当两个变量相关时,LASSO方法会让其中一个变量的相关系数会变成0,而岭回归是将两个系数同时缩小。
scikit-learn还提供了弹性网(elastic net)正则化方法,通过线性组合L1和L2兼具LASSO和岭回归的内容。可以认为这两种方法是弹性网正则化的特例。
梯度下降
梯度下降算法是用来评估函数的局部最小值,
可以用梯度下降法来找出成本函数最小的模型参数值。梯度下降法会在每一步走完后,计算对应位置的导数,然后沿着梯度(变化最快的方向)相反的方向前进。总是垂直于等高线。
但是残差平方和的成本函数是个凸函数,梯度下降可以找到全局最小值,而对于部分存在波峰波谷的函数,只能找到局部的。
梯度下降的重要参数(Learning rate)步长小,迭代就小,步长长迭代就大,根据NG的ML公开课推荐的是按照三倍 来缩放步长0.01,0.03,0.1,0.3。
如果按照每次迭代后用于更新模型参数的训练样本数量划分,有两种梯度下降法。批量梯度下降(Batch gradient descent)每次迭代都用所有训练样本。随机梯度下降(Stochastic gradient descent,SGD)每次迭代都用一个训练样本,这个训练样本是随机选择的。当训练样本较多的时候,随机梯度下降法比批量梯度下降法更快找到最优参数。批量梯度下降法一个训练集只能产生一个结果。而SGD每次运行都会产生不同的结果。SGD也可能找不到最小值,因为升级权重的时候只用一个训练样本。它的近似值通常足够接近最小值,尤其是处理残差平方和这类凸函数的时候。
import numpy as np
from sklearn.datasets import load_boston
from sklearn.linear_model import SGDRegressor
from sklearn.cross_validation import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.cross_validation import train_test_split
data = load_boston()
#分割测试集和训练集
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target)
#归一化
X_scaler = StandardScaler()
y_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train)
y_train = y_scaler.fit_transform(y_train)
X_test = X_scaler.transform(X_test)
y_test = y_scaler.transform(y_test) regressor = SGDRegressor(loss='squared_loss')
#交叉验证
scores = cross_val_score(regressor, X_train, y_train, cv=5)
print '交叉验证R方值:', scores
print '交叉验证R方均值:', np.mean(scores)
regressor.fit_transform(X_train, y_train)
print '测试集R方值:', regressor.score(X_test, y_test)
线性回归 Linear Regression的更多相关文章
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示 ...
- Ng第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 2.4 梯度下降 2.5 梯度下 ...
- 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)
二.单变量线性回归(Linear Regression with One Variable) 2.1 模型表示 2.2 代价函数 2.3 代价函数的直观理解 I 2.4 代价函数的直观理解 I ...
- 机器学习方法:回归(一):线性回归Linear regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...
- 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- ML 线性回归Linear Regression
线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...
- TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现
此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...
随机推荐
- iOS所有常见证书,appID,Provisioning Profiles配置说明及制作图文教程
转自holydancer的CSDN专栏,原文地址:http://blog.csdn.net/holydancer/article/details/9219333 概述: 苹果的证书繁锁复杂,制作管理相 ...
- iOS 疑难杂症 — — UIButton 点击卡顿/延迟
前言 一开始还以为代码写的有问题,点击事件里面有比较耗时卡主线程的代码,逐一删减代码发现并不是这么回事. 声明 欢迎转载,但请保留文章原始出处:) 博客园:http://www.cnblogs.c ...
- 数据结构->直接插入排序
数据结构->直接插入排序 实现效果 从小到大排序 算法原理 有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序. 算法步骤 从第一个元素开始,该元 ...
- JAVA实现图片裁剪
/** * 裁剪图片 * @param src 源图片 * @param dest 裁剪后的图片 * @param x 裁剪范围的X坐标 * @param y 裁剪范围的Y坐标 * @param w ...
- sql 判断 函数 存储过程是否存在的方法
下面为您介绍sql下用了判断各种资源是否存在的代码,需要的朋友可以参考下,希望对您学习sql的函数及数据库能够有所帮助.库是否存在if exists(select * from master..sys ...
- winform窗体(五)——布局方式
一.默认布局 ★可以加panel,也可以不加: ★通过鼠标拖动控件的方式,根据自己的想法布局.拖动控件的过程中,会有对齐的线,方便操作: ★也可选中要布局的控件,在工具栏中有对齐工具可供选择,也有调整 ...
- PostgreSQL-PL/pgSQL
参考: https://wiki.postgresql.org/wiki/9.1%E7%AC%AC%E4%B8%89%E5%8D%81%E4%B9%9D%E7%AB%A0 摘记: PL/pgSQL是 ...
- 图概PHP生命周期
一图胜千言~ 这是之前根据网上大牛们的分析和跟着阅读了一点源码而做出来的总结.因为那时候困于对整个过程没有一个全面的认识,所以想自己做个图吧,那样看起来要更加直接了当,说不定还能会有一个更好的认识和更 ...
- OpenSessionInViewFilter配置和作用
Spring为我们解决Hibernate的Session的关闭与开启问题. Hibernate 允许对关联对象.属性进行延迟加载,但是必须保证延迟加载的操作限于同一个 Hibernate Sessio ...
- Json解析工具Jackson(简单应用)
原文http://blog.csdn.net/nomousewch/article/details/8955796 概述 Jackson库(http://jackson.codehaus.org),是 ...