AlexNet论文解读
前言
作为深度学习的开山之作AlexNet,确实给后来的研究者们很大的启发,使用神经网络来做具体的任务,如分类任务、回归(预测)任务等,尽管AlexNet在今天看来已经有很多神经网络超越了它,但是它依然是重要的。AlexNet的作者Alex Krizhevsky首次在两块GTX 580 GPU上做神经网络,并且在2012年ImageNet竞赛中取得了冠军,这是一件非常有意义的事情,为后来深度学习的兴起奠定了重要基础,包括现在的显卡公司NVIDIA的市值超越苹果,都有深度学习的一份功劳。
下面讲解一下AlexNet的网络结构和论文复现。实验为使用AlexNet网络做猫狗分类任务;实验经过了模型搭建,训练,测试以及结果分析。
1.网络结构
AlexNet的网络一共有8层,前5层是卷积层,剩下3层是全连接层,具体如下所示:

第一层:卷积层1,输入为 224 × 224 × 3 的图像,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11 × 11 × 3;stride = 4, stride表示的是步长, pad = 0, 表示不扩充边缘;卷积后的图形大小为:wide = (224 + 2 * padding - kernel_size) / stride + 1 = 54,height = (224 + 2 * padding - kernel_size) / stride + 1 = 54,dimention = 96,然后进行 (Local Response Normalized), 后面跟着池化pool_size = (3, 3), stride = 2, pad = 0 最终获得第一层卷积的feature map;
第二层:卷积层2, 输入为上一层卷积的feature map, 卷积的个数为256个,论文中的两个GPU分别有128个卷积核。卷积核的大小为:5 × 5 × 48;pad = 2, stride = 1; 然后做 LRN,最后 max_pooling, pool_size = (3, 3), stride = 2;
第三层:卷积3, 输入为第二层的输出,卷积核个数为384,kernel_size = (3 × 3 × 128),padding = 1,第三层没有做LRN和Pool;
第四层:卷积4, 输入为第三层的输出,卷积核个数为384,kernel_size = (3 × 3 × 192),padding = 1,和第三层一样,没有LRN和Pool;
第五层:卷积5, 输入为第四层的输出,卷积核个数为256,kernel_size = (3 × 3 × 192),padding = 1。然后直接进行max_pooling, pool_size = (3, 3), stride = 2;
第6,7,8层是全连接层,每一层的神经元的个数为4096,最终输出softmax为1000,因为上面介绍过,ImageNet这个比赛的分类个数为1000。全连接层中使用了Relu和Dropout。
2.数据集
数据集为猫狗的图片,其中猫的图片12500张,狗的图片12500张;训练数据集猫12300张,狗12300张,验证集猫100张,狗100张,测试集猫100张,狗100张;数据集链接:https://pan.baidu.com/s/11UHodPIHRDwHiRoae_fqtQ 提取码:d0fa;下图为训练集示意图:

3.数据集分类
将数据集中的猫和狗分别放在train_0和train_1中:
import os
import re
import shutil
origin_path = '/workspace/src/how-to-read-paper/dataset/train'
target_path_0 = '/workspace/src/how-to-read-paper/dataset/train_0/0'
target_path_1 = '/workspace/src/how-to-read-paper/dataset/train_0/1'
os.makedirs(target_path_0, exist_ok=True)
os.makedirs(target_path_1, exist_ok=True)
file_list = os.listdir(origin_path)
for i in range(len(file_list)):
old_path = os.path.join(origin_path, file_list[i])
result = re.findall(r'\w+', file_list[i])[0]
if result == 'cat':
shutil.move(old_path, target_path_0)
else:
shutil.move(old_path, target_path_1)
4.模型搭建
进行模型搭建和数据导入:
import torch
import os
from torch import nn
from torch.nn import functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder
import torch.optim as optim
import torch.utils.data
from PIL import Image
import torchvision.transforms as transforms
# 超参数设置
DEVICE = torch.device('cuda'if torch.cuda.is_available() else 'cpu')
EPOCH = 100
BATCH_SIZE = 256
# 卷积层和全连接层、前向传播
class AlexNet(nn.Module):
def __init__(self, num_classes=2):
super(AlexNet, self).__init__()
# 卷积层
self.features = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=11),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(48, 128, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 192, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(192, 192, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(192, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
# 全连接层q
self.classifier = nn.Sequential(
nn.Linear(6*6*128, 2048),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(2048, num_classes),
)
# 前向传播
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
# 训练集、测试集、验证集的导入
# 归一化处理
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
# 训练集
path_1 = '/workspace/src/how-to-read-paper/dataset/train_0'
trans_1 = transforms.Compose([
transforms.Resize((65, 65)),
transforms.ToTensor(),
normalize,
])
# 数据集
train_set = ImageFolder(root=path_1, transform=trans_1)
# 数据加载器
train_loader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
# 测试集
path_2 = '/workspace/src/how-to-read-paper/dataset/test'
trans_2 = transforms.Compose([
transforms.Resize((65, 65)),
transforms.ToTensor(),
normalize,
])
test_data = ImageFolder(root=path_2, transform=trans_2)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
# 验证集
path_3 = '/workspace/src/how-to-read-paper/dataset/valid'
trans_3 = transforms.Compose([
transforms.Resize((65, 65)),
transforms.ToTensor(),
normalize,
])
valid_data = ImageFolder(root=path_3, transform=trans_3)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
5.训练
进行模型训练:
# 定义模型
model = AlexNet().to(DEVICE)
# 优化器的选择
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005)
def train_model(model, device, train_loader, optimizer, epoch):
train_loss = 0
model.train()
for batch_index, (data, label) in enumerate(train_loader):
data, label = data.to(device), label.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, label)
loss.backward()
optimizer.step()
if batch_index % 300 == 0:
train_loss = loss.item()
print('Train Epoch:{}\ttrain loss:{:.6f}'.format(epoch, loss.item()))
return train_loss
def test_model(model, device, test_loader):
model.eval()
correct = 0.0
test_loss = 0.0
# 不需要梯度的记录
with torch.no_grad():
for data, label in test_loader:
data, label = data.to(device), label.to(device)
output = model(data)
test_loss += F.cross_entropy(output, label).item()
pred = output.argmax(dim=1)
correct += pred.eq(label.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test_average_loss:{:.4f}, Accuracy:{:3f}\n'.format(test_loss, 100*correct/len(test_loader.dataset)))
acc = 100*correct / len(test_loader.dataset)
return test_loss, acc
# 开始训练¶
list = []
Train_Loss_list = []
Valid_Loss_list = []
Valid_Accuracy_list = []
for epoch in range(1, EPOCH+1):
# 训练集训练
train_loss = train_model(model, DEVICE, train_loader, optimizer, epoch)
Train_Loss_list.append(train_loss)
torch.save(model, r'/workspace/src/how-to-read-paper/model/model%s.pth' % epoch)
# 验证集进行验证
test_loss, acc = test_model(model, DEVICE, valid_loader)
Valid_Loss_list.append(test_loss)
Valid_Accuracy_list.append(acc)
list.append(test_loss)
6.测试
进行模型测试:
# 验证集的test_loss
min_num = min(list)
min_index = list.index(min_num)
print('model%s' % (min_index+1))
print('验证集最高准确率:')
print('{}'.format(Valid_Accuracy_list[min_index]))
# 取最好的进入测试集进行测试
model = torch.load('/workspace/src/how-to-read-paper/model/model%s.pth' % (min_index+1))
model.eval()
accuracy = test_model(model, DEVICE, test_loader)
print('测试集准确率')
print('{}%'.format(accuracy))
7.实验结果分析
下图为epoch为50和100的loss和acc的折线图,其中使用最优的模型epoch=50时测试集的loss=0.00132, acc=89.0%;其中使用最优的模型epoch=100时测试集的loss=0.00203, acc=91.5%;从实验结果可以看出epoch=20时模型train已经很好了,那么想要train一个更好的模型有方法吗?答案肯定是有的,比如说做一下数据增强、使用正则化项、噪声注入等,这些大家都可以尝试一下。
注:本实验代码地址


AlexNet论文解读的更多相关文章
- AlexNet详细解读
AlexNet详细解读 目前在自学计算机视觉与深度学习方向的论文,今天给大家带来的是很经典的一篇文章 :<ImageNet Classification with Deep Convolutio ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- itemKNN发展史----推荐系统的三篇重要的论文解读
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- < AlexNet - 论文研读个人笔记 >
Alexnet - 论文研读个人笔记 一.论文架构 摘要: 简要说明了获得成绩.网络架构.技巧特点 1.introduction 领域方向概述 前人模型成绩 本文具体贡献 2.The Dataset ...
- Gaussian field consensus论文解读及MATLAB实现
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...
- zz扔掉anchor!真正的CenterNet——Objects as Points论文解读
首发于深度学习那些事 已关注写文章 扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 关注他 JustDoIT 等 ...
- NIPS2018最佳论文解读:Neural Ordinary Differential Equations
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32 雷锋网 AI 科技评论按,不久前,NeurI ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
随机推荐
- 谢老师2024春 - Day1:组合数学
Day1:组合数学 A - P5520 [yLOI2019] 青原樱 隔板法: 已选择的位置:\(m\) 棵樱花树. 未选择的位置:\(n-m\) 个空位置 板的数量(一棵樱花树就是一个板):\(m\ ...
- 使用EasyCV Mask2Former轻松实现图像分割
简介: EasyCV可以轻松预测图像的分割谱以及训练定制化的分割模型.本文主要介绍如何使用EasyCV实现实例分割.全景分割和语义分割,及相关算法思想. 作者:贺弘 谦言 临在 导言 图像分割(Ima ...
- EasyNLP带你实现中英文机器阅读理解
简介: 本⽂将提供对MacBERT模型的技术解读,以及如何在EasyNLP框架中使⽤MacBERT及其他预训练语言模型,进行中英文机器阅读理解任务的训练与预测. 作者:施晨.黄俊 导读 机器阅读理解是 ...
- 模型代码联动难? BizWorks来助力
简介: 本文介绍了业务模型设计和实现保持一致的重要性以及实际落地可能遇到的问题,以及BizWorks如何设计并提供一种双向联动能力, 通过BizWorks Toolkit(IDE 插件) 来解决和优化 ...
- PolarDB-X 2.0:使用一个透明的分布式数据库是一种什么体验
简介: 透明分布式,是PolarDB-X即将发布的能力,它能让应用在使用PolarDB-X的过程中,犹如使用单机数据库一般的体验.与传统的中间件类型的"分布式数据库"相比,有了透明 ...
- code::blocks更改编译器配置
- NASM中的内存引用
NASM对于内存的引用规则非常简单,如果想访问内存中的内容,就将地址用[]包围,如果没有[],就表示是地址本身,而不是内容. mov ax,[wordvar] mov ax,[wordvar+1] m ...
- WEB服务与NGINX(2)-NGINX的I/O模型
WEB服务与NGINX(2)-NGINX的I/O模型 目录 WEB服务与NGINX(2)-NGINX的I/O模型 1. linux I/0模型及在NGINX中的应用 1.1 I/O模型概述 1.2 系 ...
- cesium教程5-用primitive加载glb和gltf格式的小模型
primitive加载方法更底层,用起来更麻烦,但是效率更高. 完整示例代码: <!DOCTYPE html> <html lang="en"> <h ...
- leaflet 实现地图上标记的发散闪烁动画
先看效果 js文件:blinkmarker.js L.blinkMarker = function (point, property) { // 使用js标签,便于操作,这个temDivEle的作用是 ...