【LeetCode二叉树#19】有序数组转换为二叉搜索树(构造二叉树)
将有序数组转换为二叉搜索树
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
示例:

思路
本题还是考察的构建二叉树
之前也有做过类似的题目,基本上来说,构造二叉树就是按照题目规则找根节点,然后调用递归不断构造出其左右子树即可
那么,本题的规则是什么?
题目要求我们将升序排列的有序数组,转换为一棵高度平衡二叉搜索树
因此,可以用数组的中间值为根节点来构造二叉搜索树
如果之后再来复习,肯定会想:如果中间值有两个怎么办
那现在先举个例子说明一下:
[1,2,3,4,5,6]
这里如果取中间值会有两个数,分别是3和4
实际上这不影响我们去构造一颗高度平衡二叉搜索树,因为不论选3还是4作为根节点,其左或右子树多出的一个节点也不会破坏高度的平衡
在这里,我们默认取左边的值(后面会说明原因)
确定了根节点之后,还是像之前的构建二叉树的题目,通过递归不断分割左右区间,进而构建出根节点的左右子树
代码
分析
使用递归法
1、确定递归函数的参数和返回值
不要一写参数就下意识的填根节点,这里都还没有找出根节点呢
因为要通过分割数组来构建二叉树,所以输入参数中肯定有数组nums,以及用于分割的左右区间
并且,我们需要返回的是一颗二叉树,那么返回值显然就是该树的根节点了
TreeNode* traversal(vector<int> nums, int left, int right){
}
2、确定终止条件
同理,不要一写终止条件就下意识的root==NULL
这里的终止条件应该与左右边界有关
即当 left > right 时应该结束
TreeNode* traversal(vector<int> nums, int left, int right){
//确定终止条件
if(left > right) return NULL;
}
3、确定单层处理逻辑
现在要开始取数组的中间值并分割数组
TreeNode* traversal(vector<int> nums, int left, int right){
//确定终止条件
if(left > right) return NULL;
//确定单层处理逻辑
//取中间值
int mid = (right - left)/2 + left;
}
为什么这样取中间值?
因为如果直接(right + left) / 2,当right、left均为int下的最大值,会导致数据溢出
上述方法可以避免这种问题,详见
TreeNode* traversal(vector<int> nums, int left, int right){
//确定终止条件
if(left > right) return NULL;
//确定单层处理逻辑
//取中间值
int mid = (right - left)/2 + left;
//创建根节点
TreeNode* root = new TreeNode(nums[mid]);
//调用递归继续构建左右子树
root->left = traversal(nums, left, mid - 1);//跳过mid
root->right = traversal(nums, mid + 1, right);
return root;
}
注意,在分割数组时要跳过mid处的值
完整代码
class Solution {
public:
//确定递归函数的参数与返回值
TreeNode* traversal(vector<int>& nums, int left, int right){
//确定终止条件
if(left > right) return NULL;
//确定单层处理逻辑
//先找到数组里的中间值
int mid =(right - left) / 2 + left;//防止数据溢出
//初始化根节点
TreeNode* root = new TreeNode(nums[mid]);
//递归处理分割后数组的左区间和右区间
//注意要跳过mid
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
return traversal(nums, 0 , nums.size() - 1);
}
};
构造二叉树的注意事项
1、找根节点
一般来说,没有特殊规定就找中间值作为根节点
本题中要求构建的二叉树为高度平衡的二叉搜索树,正好选中间值可以满足条件
2、根本原理
总结一下这几题构造二叉树的套路,无外乎:找根节点、递归分割数组构建左右子树
值得注意的是,在本题中,我们没有对nums本身进行操作,而是利用其下标进行的分割
而在之前做的几题里,我们分割数组时使用了**新建数组的方式
【LeetCode二叉树#19】有序数组转换为二叉搜索树(构造二叉树)的更多相关文章
- LeetCode:将有序数组转换为二叉搜索树【108】
LeetCode:将有序数组转换为二叉搜索树[108] 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差 ...
- LeetCode 108. 将有序数组转换为二叉搜索树(Convert Sorted Array to Binary Search Tree) 14
108. 将有序数组转换为二叉搜索树 108. Convert Sorted Array to Binary Search Tree 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索 ...
- Java实现 LeetCode 108 将有序数组转换为二叉搜索树
108. 将有序数组转换为二叉搜索树 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: ...
- [LeetCode] 108. 将有序数组转换为二叉搜索树
题目链接 : https://leetcode-cn.com/problems/convert-sorted-array-to-binary-search-tree/ 题目描述: 将一个按照升序排列的 ...
- 代码随想录算法训练营day23 | leetcode 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树
LeetCode 669. 修剪二叉搜索树 分析1.0 递归遍历树时删除符合条件(不在区间中)的节点-如何遍历如何删除 如果当前节点大于范围,递归左树,反之右树 当前节点不在范围内,删除它,把它的子树 ...
- [leetcode-108,109] 将有序数组转换为二叉搜索树
109. 有序链表转换二叉搜索树 Given a singly linked list where elements are sorted in ascending order, convert it ...
- LeetCode(108):将有序数组转换为二叉搜索树
Easy! 题目描述: 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组 ...
- [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)
题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...
- LeetCode刷题笔记-递归-将有序数组转换为二叉搜索树
题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10, ...
- LeetCode【108. 将有序数组转换为二叉搜索树】
又是二叉树,最开始都忘记了二叉搜索树是什么意思,搜索了一下: 二叉搜索树:左节点都小于右节点,在这里就可以考虑将数组中的中间值作为根节点 平衡二叉树:就是左右节点高度不大于1 树就可以想到递归与迭代, ...
随机推荐
- [转帖]Unixbench的使用(综合性能测试、2D测试)和问题解决(跑不出多线程分数,调不出窗口,报错等)
一.Unixbench简介 Unixbench一个基于系统的基准测试工具,不单纯是CPU 内存 或者磁盘测试工具.测试结果不仅仅取决于硬件,也取决于系统.开发库.甚至是编译器.Unixbench是一个 ...
- [转帖]鹅厂微服务发现与治理巨作PolarisMesh实践-上
文章目录 概述 定义 核心功能 组件和生态 特色亮点 解决哪些问题 官方性能数据 架构原理 资源模型 服务治理 基本原理 服务注册 服务发现 安装 部署架构 集群安装 SpringCloud应用接入 ...
- Linux与Windows系统字符集的简要学习
背景 最近同事反馈公司的产品再更新了mysql-8.0.31的驱动jar包后部分功能报错. 问题核心原因 研发这边石磊老师已经找到了. 结论是Mysql8.0.26之后的数据库驱动好像会识别操作系统的 ...
- Windows 环境下简单的自动备份以及清理数据库的操作过程
今天能想到要简单的备份一下windows上面的数据库. 然后并且能够定期清理文件. 然后从网上找了一下 找到把饭如下 1. 备份 创建一个目录用来存放数据库备份 c:\dbbak 然后编写一个脚本, ...
- React中生命周期的讲解
什么是生命周期? 从出生到成长,最后到死亡,这个过程的时间可以理解为生命周期. React中的组件也是这么一个过程. React的生命周期分为三个阶段:挂载期(也叫实例化期).更新期(也叫存在期).卸 ...
- vue3动态组件的展示
需求描述 有些时候,我们需要做这样的处理. 点击A按钮的时候,出现组件A 点击B按钮的时候,出现组件B 点击C按钮的时候,出现组件C 这个时候,我们就可以使用动态组件了 动态组件 <templa ...
- 【一个小发现】VictoriaMetrics 中 vmselect 的 `-search.denyPartialResponse` 选项不应该开启
作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 一直以为vmselect 的 -search.denyPa ...
- 【K哥爬虫普法】百亿电商数据,直接盗取获利,被判 5 年!
我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了"K哥爬虫普法"专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识, ...
- Registration Authority 简介
RA 功能简介 在公共密钥基础设施(PKI)中,CA(Certificate Authority,证书颁发机构)系统的RA(Registration Authority,注册机构)是PKI体系结构的重 ...
- Govulncheck v1.0.0 发布了!
原文在这里 原文作者:Julie Qiu, for the Go security team 发布于 13 July 2023 我们很高兴地宣布,govulncheck v1.0.0 已经发布,同时还 ...