#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const double PI=acos(-);
const int maxn=;
int n,len,m,rev[maxn],ans[maxn];
struct node{
double real,imag;
node operator +(const node &x){return (node){real+x.real,imag+x.imag};}
node operator -(const node &x){return (node){real-x.real,imag-x.imag};}
node operator *(const node &x){return (node){real*x.real-imag*x.imag,real*x.imag+imag*x.real};}
}a[maxn],b[maxn],c[maxn],w,wn,t1,t2;
void read(int &x){
x=; int f=; char ch;
for (ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') f=-;
for (;isdigit(ch);ch=getchar()) x=x*+ch-''; x*=f;
}
void Read(node *a){
char ch;
for (int i=m-;i>=;i--){
for (ch=getchar();!isdigit(ch);ch=getchar());
a[i].real=(double)(ch-'');
}
}
int Rev(int x){
int temp=;
for (int i=;i<len;i++) temp<<=,temp+=(x&),x>>=;
return temp;
}
void FFT(node *a,int op){
for (int i=;i<n;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int s=;s<=n;s<<=){
wn=(node){cos(op**PI/s),sin(op**PI/s)};
for (int i=;i<n;i+=s){
w=(node){,};
for (int j=i;j<i+s/;j++,w=w*wn){
t1=a[j],t2=w*a[j+s/];
a[j]=t1+t2,a[j+s/]=t1-t2;
}
}
}
}
int main(){
read(m); n=,len=;
while (n<(m<<)) n<<=,len++;
Read(a),Read(b);
for (int i=;i<n;i++) rev[i]=Rev(i);
FFT(a,),FFT(b,);
for (int i=;i<n;i++) c[i]=a[i]*b[i];
FFT(c,-);
for (int i=;i<n;i++) ans[i]=(int)round(c[i].real/n);
for (int i=;i<n;i++) ans[i+]+=ans[i]/,ans[i]=ans[i]%;
int j; for (j=n-;j>=;j--) if (ans[j]) break;
if (j==-) puts("");
else{for (;j>=;j--) printf("%d",ans[j]);puts("");}
return ;
}

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2179

题目大意:给定两个大数a,b,求a*b,位数n<=60000;

做法:FFT入门题,FFT的做法可以自己去看算法导论,这题是裸的卷积,直接上DFT或者NTT,我贴的是DFT的。

bzoj2179: FFT快速傅立叶的更多相关文章

  1. [bzoj2179]FFT快速傅立叶_FFT

    FFT快速傅立叶 bzoj-2179 题目大意:给出两个n位10进制整数x和y,你需要计算x*y. 注释:$1\le n\le 6\times 10^4$. 想法: $FFT$入门题. $FFT$实现 ...

  2. BZOJ2179: FFT快速傅立叶 & caioj1450:【快速傅里叶变换】大整数乘法

    [传送门:BZOJ2179&caioj1450] 简要题意: 给出两个超级大的整数,求出a*b 题解: Rose_max出的一道FFT例题,卡掉高精度 = =(没想到BZOJ也有) 只要把a和 ...

  3. bzoj千题计划166:bzoj2179: FFT快速傅立叶

    http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...

  4. BZOJ2179:FFT快速傅立叶(FFT)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  5. BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法

    Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...

  6. 【BZOJ2179】FFT快速傅立叶

    [BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...

  7. 【bzoj2179】FFT快速傅立叶 FFT模板

    2016-06-01  09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...

  8. BZOJ 2179: FFT快速傅立叶

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2923  Solved: 1498[Submit][Status][Di ...

  9. 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3308  Solved: 1720 Description 给出两个n位 ...

随机推荐

  1. iOS RESideMenu 侧滑 第三方类库

    下载地址:https://github.com/romaonthego/RESideMenu 效果如下:官方案例 自己的实现效果 具体代码下: AppDelegate.m文件中 - (BOOL)app ...

  2. 学习Maven之Properties Maven Plugin

    1.properties-maven-plugin是个什么鬼? 介绍前我们先看一个问题,比如我们有一个maven项目结构如下: 一般我们都把一些配置文件放到像src/main/resources/jd ...

  3. Oracle监听服务启动失败案例

    在ORACLE测试服务器上还原恢复了一个数据库后,启动监听服务时出现了TNS-12541, TNS-12560,TNS-00511之类的错误,具体情况如下所示: [oracle@getlnx01 ad ...

  4. VS2015 Git使用教程——优化项目编辑日志

    一.前言 公司项目中,修改日志管理是一件很繁琐的事情,而且项目维护时间长了,会遗留下各种有用或无用的日志,对于有代码洁癖的人来说,无疑是一种灾难. 1.公司日志记录结构: 2.Git日志记录结构: 二 ...

  5. Hadoop2.5.0 搭建实录

    目录: 第一步:准备相关材料 第二步:虚拟机环境搭建 第三步:用户信息 第四步 安装.配置Java环境 第五步 Zookeeper安装配置 第六步 Hadoop安装.配置 第七步:HBase安装部署 ...

  6. Solr图形化界面banana:除Hue之外的选择

    最近Hue+Solr 方案原型验证有了一些进展.正好也收到了Google的大数据专家Sam的来件询问进展,我答复如下: Sam, 你好. 已经把Kafka+flume+solr的实时索引搭建起来了, ...

  7. Python安装

    Win10 安装Python 1.官网下载Python安装包,一直点击下一步进行安装 安装完Python后要设置环境变量,右键我的电脑-->属性-->高级系统设置-->环境变量--& ...

  8. HTTP状态管理机制之Cookie

    一.cookie 起源 cookie 最早是网景公司的雇员 Lou Montulli 在1993年3月发明,后被 W3C 采纳,目前 cookie 已经成为标准,所有的主流浏览器如 IE.Chrome ...

  9. sql server全文索引使用中的小坑

    一.业务场景 我们在实际生产环境中遇到了这样一种需求,即需要检索一个父子关系的子树数据 估计大家也遇到过类似的场景,最典型的就是省市数据,其中path字段是按层级关系生成的行政区路径: 如果我们已知某 ...

  10. Mac安装Windows 10的简明教程

    每次在Mac上安装Windows都是一件非常痛苦的事情,曾经为了装Win8把整台Mac的硬盘数据都弄丢了,最后通过龟速系统恢复模式恢复了MacOSX(50M电信光纤下载了3天才把系统下载完),相信和我 ...