摘要:通过这篇文章,我们了解了GaussDB(DWS)并行计算技术的原理以及调优策略。希望广大开发者朋友们能够在实践中尝试该技术,更好地进行性能优化。

随着硬件系统的越来越好,数据库运行的CPU、磁盘、内存资源都日渐增大,SQL语句的串行执行由于不能充分利用资源,已经不能满足日益发展的需要。为此,GaussDB(DWS)开发了并行计算技术,在语句执行时可以充分利用硬件资源进行并行加速,提高执行的吞吐率。本文将详细介绍GaussDB(DWS)并行计算技术的原理,以及其在performance信息中的展示,帮助各位开发者朋友更好地分析并行的性能,从而进行并行执行方面的调优。

并行计算的原理很简单,将原本一个线程的工作平均分配到多个线程来完成,示意图如下图所示:图示中的关联操作,原本需要操作四份数据,通过并行度为4的并行计算后,每个子线程仅需要处理一份数据,理论上性能提升可以达到4倍。

通常情况下,理论上的性能提升是达不到的,因为并行计算也有其性能损耗,包括:启动线程的代价,以及线程之间进行数据传输的代价。因此,只能性能损耗较低,大大低于并行带来的收益时,并行计算的收益才比较明显。所以,并行只有在数据量较大的场景下才能获得较高的性能收益,非常适合于分析型的AP场景。

通过上述分析,我们可以看出,并行计算的难点不在于如何并行,而在于如何正确选择并行度。当数据量较小时,也许串行的性能是最好的,当数据量增大时,可以考虑进行并行。对于一个复杂的执行计划来说,可能包含多个算子,每个算子处理的数据量都不一样,如何综合考虑并行度,以及处理好各算子之间的数据收发关系,将成为并行计算技术的关键难点。

GaussDB(DWS)基于代价估算,根据表的数据量信息来为计划片段生成合适的并行度,下面以TPC-DS Q48为例来看一下,GaussDB(DWS)的并行计划长什么样?

select sum (ss_quantity)
from store_sales, store, customer_demographics, customer_address, date_dim
where s_store_sk = ss_store_sk
and ss_sold_date_sk = d_date_sk and d_year = 1998
and
(
(
cd_demo_sk = ss_cdemo_sk
and
cd_marital_status = 'M'
and
cd_education_status = '4 yr Degree'
and
ss_sales_price between 100.00 and 150.00
)
or
(
cd_demo_sk = ss_cdemo_sk
and
cd_marital_status = 'D'
and
cd_education_status = 'Primary'
and
ss_sales_price between 50.00 and 100.00
)
or
(
cd_demo_sk = ss_cdemo_sk
and
cd_marital_status = 'U'
and
cd_education_status = 'Advanced Degree'
and
ss_sales_price between 150.00 and 200.00
)
)
and
(
(
ss_addr_sk = ca_address_sk
and
ca_country = 'United States'
and
ca_state in ('KY', 'GA', 'NM')
and ss_net_profit between 0 and 2000
)
or
(ss_addr_sk = ca_address_sk
and
ca_country = 'United States'
and
ca_state in ('MT', 'OR', 'IN')
and ss_net_profit between 150 and 3000
)
or
(ss_addr_sk = ca_address_sk
and
ca_country = 'United States'
and
ca_state in ('WI', 'MO', 'WV')
and ss_net_profit between 50 and 25000
)
)
;

对应的performance信息为:

通过将performance信息转变为计划树,可以得到该计划的计划树如下图所示:其中1-3号算子在CN上执行,DN上以跨线程数据传输的Stream算子进行分隔,一共会启动5个线程。GaussDB(DWS)采用pipeline的迭代执行模式,线程4和5从磁盘读取数据,其它每个Stream算子分隔的线程从子线程读取数据,进行执行,并将结果返回给上层算子,顶层DN线程将数据返回给CN处理。通过这个图,我们可以看出,线程1,4,5采用的并行度是1,而线程2,3采用的并行度是26。通过计划信息,我们可以看出,8-13号算子处理的数据量较大,刚好是线程2,3处理的范围,所以选择了较高的并行度。

并行计算的Stream线程仍然沿用DN间的Stream线程进行启动和停止,但DN内部的数据传输改为内存拷贝进行,更节省网络资源,但带来一定程度的内存开销。同时,并行度的增大也使得跨DN间数据传输的数据缓冲区增大,内存开销变大。因此,大内存也是提高并行度的一个必备因素。那么线程之间是如何进行并行度的衔接呢?

通过计划,我们可以看出,并行场景下,Stream线程均显示为:Streaming(type: T dop:N/M),这是在串行场景基础上的扩展,同时也可以以线程为级别看到每个线程执行时间,处理的行数和使用的内存。在串行场景下,我们支持三种类型的Stream算子,分别为redistribute, broadcast和gather,详细介绍参见《GaussDB(DWS)性能调优系列基础篇二:大道至简explain分布式计划》中第一章节介绍。

并行场景是对串行场景中DN上的redistribute和broadcast类型Stream算子进行扩充,包括以下几类:

1)Streaming(type: SPLIT REDISTRIBUTE):同串行场景下的Redistribute,但以线程为单位进行数据传输,每条元组发送给一个目的线程。

2)Streaming(type: SPLIT BROADCAST):同串行场景下的Broadcast,但以线程为单位进行数据传输,每个线程都将收到全量数据。

3)Streaming(type: LOCAL REDISTRIBUTE):作用是DN内部根据当前分布键进行数据Redistribute。通常作用于基表扫描后,因为基表扫描是按页面进行线程划分,此时线程间并不是按DN的分布键分布的,需要增加该DN内重分布操作。

4)Streaming(type: LOCAL BROADCAST):作用是DN内部进行数据Broadcast,每个线程把数据发送给这个DN的所有线程,每个线程获得该DN的全量数据。5)Streaming(type: LOCAL GATHER):作用是DN内部把数据从多线程汇总到一个线程。

注意:“dop:N/M”表示发送端的dop为M,接收端的dop为N,从而完成从M个线程的并行度转变为N个线程并行度的任务。

在GaussDB(DWS)中,我们增加了参数query_dop,来控制语句的并行度,取值如下:

1)query_dop=1,串行执行,默认值

2)query_dop=[2..N],指定并行执行并行度

3)query_dop=0,自适应调优,根据系统资源和语句复杂度情况自适应选择并行度

由于开启并行会占用较多的内存,所以目前GaussDB(DWS)的默认并行度为1。在内存较大的环境下,可以通过手动设置query_dop达到并行加速的目的。通常情况下,我们可以考虑首先设置query_dop=0,查看语句的执行计划、performance信息和性能。在performance信息的下方Query Summary一栏,可以看到自适应dop选择的信息,例如:TPC-DS Q48 dop选择信息如下图所示,可以看出初步选定的initial dop为24,最终确定的final dop为26。dop的选择会综合考虑各种因素,其信息也在图中显示出来。

由于自适应选择并行度是根据语句复杂度和系统资源利用情况来进行选择,而系统资源利用情况是获取前一段时间的资源利用情况,有可能出现不准确的情况,此时就需要人为来设置并行度了。人为设置并行度,并不是设置越大越好,dop设置过大,会导致系统中的线程数量急剧增多,导致CPU冲突进行线程切换的额外开销。要想人为设置并行度,同样需要使用单机CPU核数和语句复杂程度进行考量。我们定义单机CPU核数/单机DN数为每个DN可用的CPU核数x,然后根据串行计划中DN Stream算子的个数初步判定语句的复杂度y(例如下图TPC-H Q1计划中只有一个Stream节点,则y为1),单并发时,使用x/y的值设置query_dop。并发场景,再除以并发数p设置query_dop。由于此公式为粗略估计值,因此在设置时可以考虑扩大搜索范围,来寻找合适的并行度。

在并发场景下,GaussDB(DWS)还支持max_active_statements来控制执行语句的个数,当语句的个数超过CPU核数时,可以考虑使用该参数限制并发数,然后再设置合理的query_dop进行调优。还是以刚才的示例为例,单机有96核,2个DN,则每个DN可用48核,则同时执行6个TPC-H Q1查询时,并行度可以设置为8。

通过这篇文章,我们了解了GaussDB(DWS)并行计算技术的原理以及调优策略。希望广大开发者朋友们能够在实践中尝试该技术,更好地进行性能优化。

点击关注,第一时间了解华为云新鲜技术~

大数据处理黑科技:揭秘PB级数仓GaussDB(DWS) 并行计算技术的更多相关文章

  1. 一文详解数仓GaussDB(DWS) 函数出参带出方式

    摘要:本文主要讲解DWS函数出参带出方式. 本文分享自华为云社区<GaussDB(DWS)功能 -- 函数出参 #[玩转PB级数仓GaussDB(DWS)]>,作者:譡里个檔 . DWS的 ...

  2. 【云+社区极客说】新一代大数据技术:构建PB级云端数仓实践

    本文来自腾讯云技术沙龙,本次沙龙主题为构建PB级云端数仓实践 在现代社会中,随着4G和光纤网络的普及.智能终端更清晰的摄像头和更灵敏的传感器.物联网设备入网等等而产生的数据,导致了PB级储存的需求加大 ...

  3. MTSC2019-腾讯WeTest独家揭秘移动游戏测试和质量保障 QA 黑科技

    WeTest 导读 TesterHome 联合腾讯 WeTest 出品 MTSC2019 重磅游戏测试 Topic ,首次公开揭秘腾讯亿级用户游戏背后的质量保障 QA 黑科技. 2019 年,中国游戏 ...

  4. [转帖]新iPhone的黑科技:UWB技术揭秘

    新iPhone的黑科技:UWB技术揭秘 http://blog.nsfocus.net/iphone-black-technology-uwb-technology-revealed/    阅读:  ...

  5. AI加持的阿里云飞天大数据平台技术揭秘

    摘要:2019云栖大会大数据&AI专场,阿里云智能计算平台事业部研究员关涛.资深专家徐晟来为我们分享<AI加持的阿里云飞天大数据平台技术揭秘>.本文主要讲了三大部分,一是原创技术优 ...

  6. “体检医生”黑科技|让AI开发更精准,ModelArts更新模型诊断功能

    摘要:华为云AI开发平台ModelArts黑科技加持AI研发,让模型开发更高效.更简单,降低AI在行业的落地门槛.全面的可视化评估以及智能诊断功能,使得开发者可以直观了解模型各方面性能,从而进行针对性 ...

  7. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  8. 黑科技项目:英雄无敌III Mod <<Fallen Angel>>介绍

    英雄无敌三简介(Heroes of Might and Magic III) 英3是1999年由New World Computing在Windows平台上开发的回合制策略魔幻游戏,其出版商是3DO. ...

  9. [自己动手玩黑科技] 1、小黑科技——如何将普通的家电改造成可以与手机App联动的“智能硬件”

    NOW, 步 将此黑科技传授予你~ 一.普通家电控制电路板分析 普通家电,其人机接口一般由按键和指示灯组成(高端的会稍微复杂,这里不考虑) 这样交互过程,其实就是:由当前指示灯信息,按照操作流程按相应 ...

  10. localStorage的黑科技-js和css缓存机制

    一.发现黑科技的起因  今天在微信公众号看到一篇技术博文,想用印象笔记收藏,所以发送了文章链接到pc上.然后习惯性地打开控制台,看看源码,想了解下最近微信用了什么新技术.  呵呵,以下勾起了我侦探的欲 ...

随机推荐

  1. 【Unity3D】Cesium加载大地图

    1 前言 ​ Cesium 是一个地球可视化平台和工具链,具有数据切片.数据分发.三维可视等功能. ​ Cesium 支持 JS.Unity.Unreal.O3DE.Omniverse 等平台,框架如 ...

  2. SpringBoot自动配置原理解析

    1: 什么是SpringBoot自动配置 首先介绍一下什么是SpringBoot,SpringBoost是基于Spring框架开发出来的功能更强大的Java程序开发框架,其最主要的特点是:能使程序开发 ...

  3. 使用 Vue 3 插件(Plugin)实现 OIDC 登录和修改密码(OIDC 系统以 Keycloak 为例)

    背景 目前单位系统常用 Keycloak 作为认证系统后端,而前端之前写的也比较随意,这次用 Vue 3 插件以及 Ref 响应式来编写这个模块.另外,这个可能是全网唯一使用 keycloak 的 O ...

  4. 手撕Vuex-安装模块数据

    前言 根据上一篇,[手写Vuex]-提取模块信息,我们已经可以获取到模块的信息了,将模块信息变成了我们想要的数据结构,接下来我们就要根据模块的信息,来安装模块的数据. 在上一篇当中我们定义了一个 Mo ...

  5. Codeforces Round #703 (Div. 2) A、B、D、E题解

    写在前边 链接:Codeforces Round #703 (Div. 2) 这次的交互题是真不会做. A. Shifting Stacks 链接:A题链接 题目大意: 有\(n\)摞高度分别为\(h ...

  6. 【python】Tkinter学习

    定义 python自带的可编辑的GUI界面,是一个图像窗口. Tkinter是使用python进行窗口视窗设计的模块. 标签-按钮 2.1.Lable&Button标签和按钮 定义window ...

  7. 月薪3w的报表工程师要会哪些技能?报表工程师的招聘要求解读

    对于月薪3w的报表工程师,通常需要具备以下技能: 1. 数据分析与处理 - 数据仓库:了解数据仓库的设计原则和架构,能够构建和优化数据仓库结构. - SQL语言:熟练掌握SQL查询语言,能够编写复杂的 ...

  8. Cannot resolve symbol ‘c:forEach‘;Cannot resolve taglib with uri http://java.sun.com/jsp/jstl/corede

    #### Cannot resolve taglib with uri http://java.sun.com/jsp/jstl/core:等类似,都是因为 在jsp页面中加入<%@ tagli ...

  9. jdk11的HttpClient

    我们都知道在jdk11之前都在用okhttp或者org.apache.httpcomponents  其实早在jdk9的时候这个方案就在孵化中 上面的截图来自openjdk的官网,注:openjdk是 ...

  10. 在Linux服务器上装jenkins(方式二:rpm包)

    官网下载jenkins https://www.jenkins.io/zh/download/ 上面比较慢,我们从清华大学开源镜像站下载安装包:https://mirrors.tuna.tsinghu ...