https://www.cnblogs.com/codelogs/p/17056485.html

原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处。

简介#

最近我观察到一个现象,当服务的请求量突发的增长一下时,服务的有效QPS会下降很多,有时甚至会降到0,这种现象网上也偶有提到,但少有解释得清楚的,所以这里来分享一下问题成因及解决方案。

队列延迟#

目前的Web服务器,如Tomcat,请求处理过程大概都类似如下:

这是Tomcat请求处理的过程,如下:

  1. Acceptor线程:线程名类似http-nio-8080-Acceptor-0,此线程用于接收新的TCP连接,并将TCP连接注册到NIO事件中。
  2. Poller线程:线程名类似http-nio-8080-ClientPoller-0,此线程一般有CPU核数个,用于轮询已连接的Socket,接收新到来的Socket事件(如调用端发请求数据了),并将活跃Socket放入exec线程池的请求队列中。
  3. exec线程:线程名类似http-nio-8080-exec-0,此线程从请求队列中取出活跃Socket,并读出请求数据,最后执行请求的API逻辑。

这里不用太关心AcceptorPoller线程,这是nio编程时常见的线程模型,我们将重点放在exec线程池上,虽然Tomcat做了一些优化,但它还是从Java原生线程池扩展出来的,即有一个任务队列与一组线程。

当请求量突发增长时,会发生如下的情况:

  1. 当请求量不大时,任务队列基本是空的,每个请求都能得到及时的处理。
  2. 但当请求量突发时,任务队列中就会有很多请求,这时排在队列后面的请求,就会被处理得越晚,因而请求的整体耗时就会变长,甚至非常长。

可是,exec线程们还是在一刻不停歇的处理着请求的呀,按理说服务QPS是不会减少的呀!

简单想想的确如此,但调用端一般是有超时时间设置的,不会无限等待下去,当客户端等待超时的时候,这个请求实际上Tomcat就不用再处理了,因为就算处理了,客户端也不会再去读响应数据的。

因此,当队列比较长时,队列后面的请求,基本上都是不用再处理的,但exec线程池不知道啊,它还是会一如既往地处理这些请求。

当exec线程执行这些已超时的请求时,若又有新请求进来,它们也会排在队尾,这导致这些新请求也会超时,所以在流量突发的这段时间内,请求的有效QPS会下降很多,甚至会降到0。

这种超时也叫做队列延迟,但队列在软件系统中应用得太广泛了,比如操作系统调度器维护了线程队列,TCP中有backlog连接队列,锁中维护了等待队列等等。

因此,很多系统也会存在这种现象,平时响应时间挺稳定的,但偶尔耗时很高,这种情况有很多都是队列延迟导致的。

优化队列延迟#

知道了问题产生的原因,要优化它就比较简单了,我们只需要让队列中那些长时间未处理的请求暂时让路,让线程去执行那些等待时间不长的请求即可,毕竟这些长时间未处理的请求,让它们再等等也无防,因为客户端可能已经超时了而不需要请求结果了,虽然这破坏了队列的公平性,但这是我们需要的。

对于Tomcat,在springboot中,我们可以如下修改:
使用WebServerFactoryCustomizer自定义Tomcat的线程池,如下:

@Component
public class TomcatExecutorCustomizer implements WebServerFactoryCustomizer<TomcatServletWebServerFactory> {
@Resource
ServerProperties serverProperties; @Override
public void customize(TomcatServletWebServerFactory factory) {
TomcatConnectorCustomizer tomcatConnectorCustomizer = connector -> {
ServerProperties.Tomcat.Threads threads = serverProperties.getTomcat().getThreads();
TaskQueue taskqueue = new SlowDelayTaskQueue(1000);
ThreadPoolExecutor executor = new org.apache.tomcat.util.threads.ThreadPoolExecutor(
threads.getMinSpare(), threads.getMax(), 60L, TimeUnit.SECONDS,
taskqueue, new CustomizableThreadFactory("http-nio-8080-exec-"));
taskqueue.setParent(executor);
ProtocolHandler handler = connector.getProtocolHandler();
if (handler instanceof AbstractProtocol) {
AbstractProtocol<?> protocol = (AbstractProtocol<?>) handler;
protocol.setExecutor(executor);
}
};
factory.addConnectorCustomizers(tomcatConnectorCustomizer);
}
}

注意,这里还是使用的Tomcat实现的线程池,只是将任务队列TaskQueue扩展为了SlowDelayTaskQueue,它的作用是将长时间未处理的任务移到另一个慢队列中,待当前队列中无任务时,再把慢队列中的任务移回来。

为了能记录任务入队列的时间,先封装了一个记录时间的任务类RecordTimeTask,如下:

@Getter
public class RecordTimeTask implements Runnable {
private Runnable run;
private long createTime;
private long putQueueTime; public RecordTimeTask(Runnable run){
this.run = run;
this.createTime = System.currentTimeMillis();
this.putQueueTime = this.createTime;
}
@Override
public void run() {
run.run();
} public void resetPutQueueTime() {
this.putQueueTime = System.currentTimeMillis();
} public long getPutQueueTime() {
return this.putQueueTime;
}
}

然后队列的扩展实现如下:

public class SlowDelayTaskQueue extends TaskQueue {
private long timeout;
private BlockingQueue<RecordTimeTask> slowQueue; public SlowDelayTaskQueue(long timeout) {
this.timeout = timeout;
this.slowQueue = new LinkedBlockingQueue<>();
} @Override
public boolean offer(Runnable o) {
// 将任务包装一下,目的是为了记录任务放入队列的时间
if (o instanceof RecordTimeTask) {
return super.offer(o);
} else {
return super.offer(new RecordTimeTask(o));
}
} public void pullbackIfEmpty() {
// 如果队列空了,从慢队列中取回来一个
if (this.isEmpty()) {
RecordTimeTask r = slowQueue.poll();
if (r == null) {
return;
}
r.resetPutQueueTime();
this.add(r);
}
} @Override
public Runnable poll(long timeout, TimeUnit unit) throws InterruptedException {
pullbackIfEmpty();
while (true) {
RecordTimeTask task = (RecordTimeTask) super.poll(timeout, unit);
if (task == null) {
return null;
}
// 请求在队列中长时间等待,移入慢队列中
if (System.currentTimeMillis() - task.getPutQueueTime() > this.timeout) {
this.slowQueue.offer(task);
continue;
}
return task;
}
} @Override
public Runnable take() throws InterruptedException {
pullbackIfEmpty();
while (true) {
RecordTimeTask task = (RecordTimeTask) super.take();
// 请求在队列中长时间等待,移入慢队列中
if (System.currentTimeMillis() - task.getPutQueueTime() > this.timeout) {
this.slowQueue.offer(task);
continue;
}
return task;
}
}
}

逻辑其实挺简单的,如下:

  1. 当任务入队列时,包装一下任务,记录一下入队列的时间。
  2. 然后线程从队列中取出任务时,若发现任务等待时间过长,就将其移入慢队列。
  3. 而pullbackIfEmpty的逻辑,就是当队列为空时,再将慢队列中的任务移回来执行。

为了将请求的队列延迟记录在access.log中,我又修改了一下Task,并加了一个Filter,如下:

  1. 使用ThreadLocal将队列延迟先存起来
@Getter
public class RecordTimeTask implements Runnable {
private static final ThreadLocal<Long> WAIT_IN_QUEUE_TIME = new ThreadLocal<>(); private Runnable run;
private long createTime;
private long putQueueTime;
public RecordTimeTask(Runnable run){
this.run = run;
this.createTime = System.currentTimeMillis();
this.putQueueTime = this.createTime;
}
@Override
public void run() {
try {
WAIT_IN_QUEUE_TIME.set(System.currentTimeMillis() - this.createTime);
run.run();
} finally {
WAIT_IN_QUEUE_TIME.remove();
}
} public void resetPutQueueTime() {
this.putQueueTime = System.currentTimeMillis();
} public long getPutQueueTime() {
return this.putQueueTime;
} public static long getWaitInQueueTime(){
return ObjectUtils.defaultIfNull(WAIT_IN_QUEUE_TIME.get(), 0L);
}
}
  1. 再在Filter中将队列延迟取出来,放入Request对象中
@WebFilter
@Component
public class WaitInQueueTimeFilter extends HttpFilter { @Override
public void doFilter(HttpServletRequest request, HttpServletResponse response, FilterChain chain) throws
IOException,
ServletException {
long waitInQueueTime = RecordTimeTask.getWaitInQueueTime();
// 将等待时间设置到request的attribute中,给access.log使用
request.setAttribute("waitInQueueTime", waitInQueueTime); // 如果请求在队列中等待了太长时间,客户端大概率已超时,就没有必要再执行了
if (waitInQueueTime > 5000) {
response.sendError(503, "service is busy");
return;
}
chain.doFilter(request, response);
} }
  1. 然后在access.log中配置队列延迟
server:
tomcat:
accesslog:
enabled: true
directory: /home/work/logs/applogs/java-demo
file-date-format: .yyyy-MM-dd
pattern: '%h %l %u %t "%r" %s %b %Dms %{waitInQueueTime}rms "%{Referer}i" "%{User-Agent}i" "%{X-Forwarded-For}i"'

注意,在access.log中配置%{xxx}r表示取请求xxx属性的值,所以,%{waitInQueueTime}r就是队列延迟,后面的ms是毫秒单位。

优化效果#

我使用接口压测工具wrk压了一个测试接口,此接口执行时间100ms,使用1000个并发去压,1s的超时时间,如下:

wrk -d 10d -T1s --latency http://localhost:8080/sleep -c 1000

然后,用arthas看一下线程池的队列长度,如下:

[arthas@619]$ vmtool --action getInstances \
--classLoaderClass org.springframework.boot.loader.LaunchedURLClassLoader \
--className org.apache.tomcat.util.threads.ThreadPoolExecutor \
--express 'instances.{ #{"ActiveCount":getActiveCount(),"CorePoolSize":getCorePoolSize(),"MaximumPoolSize":getMaximumPoolSize(),"QueueSize":getQueue().size()} }' \
-x 2


可以看到,队列长度远小于1000,这说明队列中积压得不多。

再看看access.log,如下:

可以发现,虽然队列延迟任然存在,但被控制在了1s以内,这样这些请求就不会超时了,Tomcat的有效QPS保住了。

而最后面那些队列延迟极长的请求,则是被不公平对待的请求,但只能这么做,因为在请求量超出Tomcat处理能力时,只能牺牲掉它们,以保全大局。

作者:打码日记

出处:https://www.cnblogs.com/codelogs/p/17056485.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

[转帖] 请求量突增一下,系统有效QPS为何下降很多?的更多相关文章

  1. 请求量突增一下,系统有效QPS为何下降很多?

    原创:扣钉日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介 最近我观察到一个现象,当服务的请求量突发的增长一下时,服务的有效QPS会下降很多,有时甚至会降到0,这种现象网上也 ...

  2. 案例实战:每日上亿请求量的电商系统,JVM年轻代垃圾回收参数如何优化?

    出自:http://1t.click/7TJ 目录: 案例背景引入 特殊的电商大促场景 抗住大促的瞬时压力需要几台机器? 大促高峰期订单系统的内存使用模型估算 内存到底该如何分配? 新生代垃圾回收优化 ...

  3. 每日上亿请求量的电商系统,JVM年轻代垃圾回收参数如何优化? ----实战教会你如何配置

    目录: 案例背景引入 特殊的电商大促场景 抗住大促的瞬时压力需要几台机器? 大促高峰期订单系统的内存使用模型估算 内存到底该如何分配? 新生代垃圾回收优化之一:Survivor空间够不够 新生代对象躲 ...

  4. Sentinel基本使用--基于QPS流量控制(二), 采用Warm Up预热/冷启动方式控制突增流量

    Sentinel基本使用--基于QPS流量控制(二), 采用Warm Up预热/冷启动方式控制突增流量 2019年02月18日 23:52:37 xiongxianze 阅读数 398更多 分类专栏: ...

  5. 请求量限制方法-使用本地Cache记录当前请求量[坑]

    有个需求:需要限制每个账户请求服务器的次数(该次数可以配置在DB,xml文件或其他).单位:X次/分钟.若1分钟内次数<=X 则允许访问,1分钟内次数>X则不再允许访问.   这类需求很常 ...

  6. [故障公告] 13:52-14:03,访问量突增,博客web服务器CPU 100%

    13:52-14:03,由于访问量突增,博客web服务器全线CPU 100%,造成博客站点不正常访问,由此给您带来麻烦,请您谅解. 为了迎接访问量的增长给web服务器CPU带来的巨大压力,上周我们已经 ...

  7. 近期业务大量突增微服务性能优化总结-3.针对 x86 云环境改进异步日志等待策略

    最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...

  8. 近期业务大量突增微服务性能优化总结-4.增加对于同步微服务的 HTTP 请求等待队列的监控

    最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...

  9. 【故障公告】龙卷风来袭:突增的并发请求,撑不住的CPU

    (上图是数据库连接数监控图) 非常抱歉,今天下午 16:50-17:40 期间,一场龙卷风突袭园子,突增的并发请求狂卷博客站点的 pod,由于风力巨大(70%左右的增量),pod 的 cpu 不堪重负 ...

  10. JVM菜鸟进阶高手之路二(JVM的重要性,Xmn是跟请求量有关。)

    转载请注明原创出处,谢谢! 今天看群聊jvm,通常会问ygc合适吗? 阿飞总结,可能需要2个维度,1.单位时间执行次数,2.执行时间 ps -p pid -o etime 查看下进程的运行时间, 17 ...

随机推荐

  1. 2023-06-04:你的音乐播放器里有 N 首不同的歌, 在旅途中,你的旅伴想要听 L 首歌(不一定不同,即,允许歌曲重复, 请你为她按如下规则创建一个播放列表, 每首歌至少播放一次, 一首歌只有在

    2023-06-04:你的音乐播放器里有 N 首不同的歌, 在旅途中,你的旅伴想要听 L 首歌(不一定不同,即,允许歌曲重复, 请你为她按如下规则创建一个播放列表, 每首歌至少播放一次, 一首歌只有在 ...

  2. JDK1.6在生产环境引起的坑

    本文分享自华为云社区<[高并发]记一次JDK1.6在生产环境引起的坑!>,作者: 冰 河 . 最近有朋友遇到一个困惑:他写的程序在测试环境一点问题没有,但是发到生产环境却会频繁出现内存溢出 ...

  3. openGauss内核分析:执行计划生成

    摘要:SQL语句解析完成后被解析成Query结构,在进行优化时是以Query为单位进行的,Query的优化分为基于规则的逻辑优化(查询重写)和基于代价的物理优化(计划生成),主入口函数为subquer ...

  4. CWE4.8:2022年危害最大的25种软件安全问题

    摘要:我们来看下新版的<2022年危害最大的25种安全问题>在安全预防上会给了我们哪些安全提示. 本文分享自华为云社区<CWE4.8 -- 2022年危害最大的25种软件安全问题&g ...

  5. Gartner 权威解读: SBOM 采用率将于2025年达到60%

    随着现代软件开发越来越依赖于第三方资源,针对软件供应链的恶意攻击数量也随之激增.据业内权威机构 Gartner 预计,软件物料清单 (SBOM) 的采用率在 2025 年将会达到 60%. Gartn ...

  6. .Net Core 中 MemoryCache 使用

    1.Demo,实际项目中不这么使用 class Program { static void Main(string[] args) { //缓存的配置 MemoryCacheOptions cache ...

  7. Django rest_framework用户认证和权限

    完整的代码 https://gitee.com/mom925/django-system 使用jwt实现用户认证 pip install djangorestframework-simplejwt 重 ...

  8. CO40/CO41转生产订单下达时不能创建采购申请

    一.配置 CO01创建生产订单,创建时生成采购申请,改为下达时创建采购申请.通过配置,将预留/采购申请 更改为2即可. 但是CO41和CO40通过配置,并不能达到更改预留/采购申请 为2. 二.调试源 ...

  9. @Scheduled cron 定时任务表达式含义,及* ?的区别

    好多网友对@Scheduled cron表达式含义做了阐述,个人认为很多对于 * ?的说明不够具体也不算准确,借此本文特别对 * ?做一下说明. cron格式:[秒数][分钟][小时][日期][月份] ...

  10. 题解 CF1550C. Manhattan Subarrays (思维)

    来源:Educational Codeforces Round 111 (Rated for Div. 2) 不难但很好的思维题 设 \(d(p,q)\) 为 \(p,q\) 两点之间的曼哈顿距离 给 ...