\(\text{Solution}\)

题目

\(\text{Simpson}\) 公式:

\[\int_l^r f(x) {\mathrm d}x = \frac{(r-l)(f(l)+f(r)+4f(\frac{l+r}2))} 6
\]

然后就是自适应的过程

\(\text{Code}\)

#include <cstdio>
#include <cmath>
#define IN inline
using namespace std; double a, b, c, d, L, R; IN double F(double x) {return (c * x + d) / (a * x + b);}
IN double Simpson(double l, double r) {return (r - l) * (F(l) + F(r) + F((l + r) / 2) * 4) / 6;}
IN double ASR(double l, double r, double eps, double ans) {
double mid = (l + r) / 2, sl = Simpson(l, mid), sr = Simpson(mid, r);
if (fabs(sl + sr - ans) < eps) return sl + sr;
return ASR(l, mid, eps / 2, sl) + ASR(mid, r, eps / 2, sr);
} int main() {
scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &L, &R);
printf("%.6lf\n", ASR(L, R, 1e-7, Simpson(L, R)));
}

P4525 【模板】自适应辛普森法 1的更多相关文章

  1. 洛谷.4525.[模板]自适应辛普森法1(Simpson积分)

    题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程 ...

  2. 洛谷P4525 【模板】自适应辛普森法1与2

    洛谷P4525 [模板]自适应辛普森法1 与P4526[模板]自适应辛普森法2 P4525洛谷传送门 P4525题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛 ...

  3. P4525 【模板】自适应辛普森法1

    P4525 [模板]自适应辛普森法1 #include <bits/stdc++.h> using namespace std; ; double a, b, c, d, l, r; in ...

  4. 洛谷4525 & 4526:【模板】自适应辛普森法——题解

    参考:https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B ...

  5. 洛谷P4526 【模板】自适应辛普森法2

    P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...

  6. P4526 【模板】自适应辛普森法2

    P4526 [模板]自适应辛普森法2 #include <bits/stdc++.h> using namespace std; ; double a; inline double f(d ...

  7. luogu P4525 自适应辛普森法1

    LINK:自适应辛普森法1 观察题目 这个东西 凭借我们的数学知识应该是化简不了的. 可以直接认为是一个函数 求定积分直接使用辛普森就行辣. 一种写法: double a,b,c,d; double ...

  8. HDU - 1071 - The area - 高斯约旦消元法 - 自适应辛普森法积分

    http://acm.hdu.edu.cn/showproblem.php?pid=1071 解一个给定三个点的坐标二次函数某区域的积分值. 设出方程之后高斯消元得到二次函数.然后再消元得到直线. 两 ...

  9. 洛谷P4525 【模板】自适应辛普森法1(simpson积分)

    题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛. 输入输出格式 输入格式: 一行,包含6个实数a,b,c,d,L,R 输出格式: 一行,积分值,保留至小数点后 ...

  10. 洛谷P4525 【模板】自适应辛普森法1

    题面 传送门 题解 我似乎连积分都不太熟练→_→ 总之就是对于一个原函数,我们找一个二次函数来近似它,那么有 \[ \begin{aligned} \int_a^bf(x)dx &\appro ...

随机推荐

  1. python opencv制作隐藏图片

    前言 隐藏图片就是在白色背景和黑色背景显示出不同的图片,之前qq可以显示,现在好像也不行了,原因就是原来的qq,在发出来默认是白色背景,而点开后是黑色背景.但是这个原理还是挺有意思的,所以简单的研究了 ...

  2. CheckBox 单选实现及取值

    <input name="ck" type="checkbox" value="1"/><span>按计划进行< ...

  3. 【面试题总结】Java并发-多线程、JUC详述(思维导图)

    〇.整体目录 一.多线程 1.实现方式 2.内存图 3.线程状态 4.实现线程同步 5.并发编程 二.JUC 1.概述与volatile关键字 2.ThreadLocal类 3.CAS方法 4.ato ...

  4. 【每日一题】【双端降序队列Deque】2021年12月28日-239. 滑动窗口最大值

    给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 来源:力扣(L ...

  5. USB限流IC,限流开关保护芯片

    PW1503和PW1502是超低RDS(ON)开关,具有可编程电流限制的USB限流IC,以保护电源于过电流负载和正极负极短路的保护.它具有过温保护以及反向闭锁功能. PW1503,PW1502均采用S ...

  6. k8s-学习笔记总结(从入门到放弃的学习路线)

    刚入门学习k8s,我觉得挺难的,一头雾水,买了一本<Kubernetes权威指南>,真的很厚.我觉得作为应用开发人员的学习路线,不要想着一口气看完k8s的所有概念,要逐步学习,要看完这么厚 ...

  7. Windows Terminal ssh 远程 Linux 和使用 Git

    Windows Terminal ssh 远程 Linux 和使用 Git Windows Terminal (中文:终端)是 Win11 自带的 Terminal.可以添加配置文件,然后把远程主机放 ...

  8. IOS移动端 -webkit-overflow-scrollin属性造成的问题

    -webkit-overflow-scrolling带来的相关问题. -webkit-overflow-scrolling 属性控制元素在移动设备上是否使用滚动回弹效果. 其具有两个属性: auto: ...

  9. 论文翻译:2022_DNS_1th:Multi-scale temporal frequency convolutional network with axial attention for speech enhancement

    论文地址:带轴向注意的多尺度时域频率卷积网络语音增强 论文代码:https://github.com/echocatzh/MTFAA-Net 引用:Zhang G, Yu L, Wang C, et ...

  10. Django批量插入(自定义分页器)

    目录 一:批量插入 1.常规批量插入数据(时间长,效率低 不建议使用) 2.使用orm提供的bulk_create方法批量插入数据(效率高 减少操作时间) 3.总结 二:自定义分页器 1.自定义分页器 ...