设 \(f_{i,j}\) 为恰好 \(i\) 行 \(j\) 列不满足条件的矩阵个数, \(g_{i,j}\) 为钦定 \(i\) 行 \(j\) 列不满足条件的矩阵个数。

容易得到:

\[g_{x,y}=\binom n x \binom n y (k-1)^{n^2-(n-x)(n-y)}k^{(n-x)(n-y)}
\]
\[g_{x,y}=\sum_{i=x}^n\sum_{j=y}^n\binom i x\binom j y f_{i,j}
\]

根据二元二项式反演有:

\[f_{x,y}=\sum_{i=x}^n\sum_{j=y}^n\binom i x\binom j y(-1)^{i+j-x-y}g_{i,j}
\]

我们要求的是 \(f_{0,0}\),也就是:

\[\sum_{i=0}^n\sum_{j=0}^n\binom i 0\binom j 0\binom n i\binom n j(-1)^{i+j}(k-1)^{n^2-(n-i)(n-j)}k^{(n-i)(n-j)}
\]
\[\sum_{i=0}^n\sum_{j=0}^n\binom n i\binom n j(-1)^{i+j}(k-1)^{n^2-n^2+ni+nj-ij}k^{n^2-ni-nj+ij}
\]
\[k^{n^2}\sum_{i=0}^n\sum_{j=0}^n\binom n i\binom n j(-1)^{i+j}(\frac {k-1} k)^{ni+nj-ij}
\]

为了方便,以下设 \(a=\frac {k-1} k\)。

做法1

有 \(ij=\binom {i+j} 2-\binom i 2-\binom j 2\),所以:

\[k^{n^2}\sum_{i=0}^n\sum_{j=0}^n\binom n i\binom n j(-1)^{i+j}a^{ni+nj-\binom {i+j} 2+\binom i 2+\binom j 2}
\]
\[k^{n^2}n!^2\sum_{i=0}^n\sum_{j=0}^n\frac 1 {i!(n-i)!}\frac 1 {j!(n-j)!}(-1)^{i+j}a^{ni+nj-\binom {i+j} 2+\binom i 2+\binom j 2}
\]

设:

\[F_i=\frac {(-1)^ia^{ni+\binom i 2}} {i!(n-i)!}
\]
\[G_x=\sum_{i=0}^xF_i \times F_{x-i}
\]

答案即为:

\[k^{n^2}n!^2\sum_{i=0}^{2n}G_i \times a^{-\binom i 2}
\]

然后我们有 \(a^{\binom n 2}= \prod_{i=1}^{n-1}a^i\),可以线性递推 \(a^{ni}\) 和 \(a^{\binom i 2}\)。

使用 MTT 计算 \(G\) 即可 \(O(\log mod+n\log n)\) 计算答案。

做法2

\[k^{n^2}\sum_{i=0}^n\sum_{j=0}^n\binom n i\binom n j(-1)^{i+j}a^{ni+(n-i)j}
\]
\[k^{n^2}\sum_{i=0}^n\binom n i(-1)^ia^{ni}\sum_{j=0}^n\binom n j(-1)^ja^{(n-i)j}
\]
\[k^{n^2}\sum_{i=0}^n\binom n i(-1)^ia^{ni}(1-a^{n-i})^n
\]
\[k^{n^2}\sum_{i=0}^n\binom n i(-1)^i(a^i-a^n)^n
\]

预处理 \(a^1 \sim a^n\) 即可 \(O(n\log n+\log mod)\)。

CF1228E题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. NSArray 遍历

    1.NSArray的下标遍历 NSArray *arr = @[p1, p2, p3, p4, p5]; for (int i = 0; i < arr.count; ++i) { Person ...

  2. JVM收藏的文章

    JAVA 内存泄露详解(原因.例子及解决) https://blog.csdn.net/anxpp/article/details/51325838 JVM内存区域划分Eden Space.Survi ...

  3. python基础2-静态方法和类方法

    1. 类方法 是类对象所拥有的方法,需要用修饰器@classmethod来标识其为类方法,对于类方法,第一个参数必须是类对象,一般以cls作为第一个参数(当然可以用其他名称的变量作为其第一个参数,但是 ...

  4. LNMP架构的源码编译以及yum安装

    LNMP架构的源码编译以及yum安装 目录 LNMP架构的源码编译以及yum安装 一.LNMP架构的编译安装 1. 安装nginx服务 (1)关闭防火墙 (2)安装依赖包 (3)创建运行用户 (4)编 ...

  5. 《Effective Python》笔记——第2章 函数

    一.函数出错的时候抛异常,而不要返回None pass 二.闭包 书里的例子不好,参考https://www.cnblogs.com/Lin-Yi/p/7305364.html 在一个外函数中定义了一 ...

  6. Ubuntu下pip3的安装、升级、卸载

    1.安装 sudo apt-get install python3-pip 2.升级 sudo pip3 install --upgrade pip 3.卸载 sudo apt-get remove ...

  7. Kubernetes:容器资源需求与限制(约束)

    Blog:博客园 个人 A Container is guaranteed to have as much memory as it requests, but is not allowed to u ...

  8. Solution Set -「LOCAL」冲刺省选 Round XXII

    \(\mathscr{Summary}\)   和出题人很有缘分但是没有珍惜.jpg   A 题有一个显然的二维偏序斜率式,以及显然的 CDQ 套李超树 \(\mathcal O(n\log^2n)\ ...

  9. Solution -「UOJ #46」玄学

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\) 和 \(q\) 次操作,操作内容如下: 给出 \(l,r,k,b\),声明一个修改方案,表示 ...

  10. Java 8 stream的详细用法

    话不多说,直接看代码演示 /** * @description: stream 练习 * @author: hwx * @date: 2022/02/10 **/ public class strea ...