图像梯度处理

  • Sobel算子

  

  水平方向:

  • 对于线条A和线条B,右侧像素值与左侧像素值的差值不为零,因此是边界

   上下像素值差值为0,左右素值的差值不为零,分布为正负,

   离的近的为2,离的远的为1

  

          P5=(P3-P1)+2(P6-P4)+(P9-P7)  

  竖直方向:

  • 对于线条A和线条B,上侧像素值与下侧像素值的差值不为零,因此是边界

   左右像素值差值为0,上下素值的差值不为零,分布为正负,

   离的近的为2,离的远的为1

          P5=(P7-P1)+2(P8-P2)+(P9-P3)

  在使用时,P5可能是负数,所以要取绝对值!

  cv2.Sobel( src, depth, dx, dy[, ksize[, scale[, delta[, borderType]]]] )

  • src表示输入图像

  • depth表示输出图像的深度

  • dx表示x轴方向的求导阶数

  • dy表示y轴方向的求导阶数

    • 注意要分别算x,y轴,不能同时算。同时算不准确
  • ksize表示Sobel核的大小

  • scale表示计算导数值所采用的缩放因子,默认值是1

  • delta表示加在输出图像的值,默认值是0

  • borderType表示边界样式

img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE)
#x轴方向的求导阶数
soblex = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
#取绝对值
soblex = cv2.convertScaleAbs(soblex)
#x轴方向的求导阶数
sobley = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobley = cv2.convertScaleAbs(sobley)
#x,y轴综合
soblexy = cv2.addWeighted(soblex,0.5,sobley,0.5,0) #对比,xy同时算
soblexy2 = cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
soblexy2 = cv2.convertScaleAbs(soblexy2) res = np.hstack((img,soblexy,soblexy2))
cv_show('img',res)

  • Scharr算子

  Scharr算子和Sobel算子具有同样速度且精度更高。当Sobel核结构不大时,精度不高,Scharr算子具有更高的精度,Scharr算子是Sobel算子的改进。

img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE)
scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharry = cv2.convertScaleAbs(scharry)
scharrxy = cv2.addWeighted(scharrx,0.5,scharry,0.5,0) res = np.hstack((img,scharrxy))
cv_show('img',res)

  • Laplacian算子

  Laplacian(拉普拉斯)算子是二阶导数算子,具有旋转不变性,没有边缘的方向信息,双倍加强噪声对图像的影响。通常情况下,Laplacian算子的系数之和为零。

  Laplacian算子对噪音点敏感!

   

  

                

    

     •非边界(梯度小,边缘不明显)

    P5=(94+80+92+85)-4x88=-1

    •边界(梯度大,边缘明显)

    P5=(200+204+175+158)-4x88=385

    P5=(20+24+17+15)-4x88=-276

img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian) res = np.hstack((img,laplacian))
cv_show('res',res)

 

  • Sobel算子 Scharr算子 Laplacian算子对比

  

Sobel算子 Scharr算子 Laplacian算子的更多相关文章

  1. OpenCV——边缘检测(sobel算子、Laplacian算子、scharr滤波器)

    #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace st ...

  2. 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...

  3. 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)

    1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...

  4. [OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

    http://blog.csdn.net/poem_qianmo/article/details/25560901 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

  5. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Laplacian算子

    多元函数的二阶导数又称为Laplacian算子: \[ \triangledown f(x, y) = \frac {\partial^2 f}{\partial x^2} + \frac {\par ...

  7. 实现Sobel算子滤波、Robers算子滤波、Laplace算子滤波

    前几天,老师布置了这样一个任务,读取图片并显示,反色后进行显示:进行Sobel算子滤波,然后反色,进行显示:进行Robers算子滤波,然后反色,进行显示.我最后加上了Laplace算子滤波,进行了比较 ...

  8. Spark常用算子-KeyValue数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import or ...

  9. Spark常用算子-value数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; im ...

随机推荐

  1. 交换机基本原理与VRP基础及操作

    交换机基本原理与VRP基础及操作 目录 交换机基本原理与VRP基础及操作 一.数据链路层 1.数据链路层的位置 2.数据链路层的功能 二.以太网(Ethernet) 1.以太网的概念 2.MAC地址( ...

  2. JQgrid实现全表单元格编辑

    1 jQuery("#baseWageDataValueGrid").jqGrid('setGridParam',{'cellEdit':true}); 2 3 //修改所有td ...

  3. 二叉树的基本操作(C语言版)

    今天走进数据结构之二叉树 二叉树的基本操作(C 语言版) 1 二叉树的定义 二叉树的图长这样: 二叉树是每个结点最多有两个子树的树结构,常被用于实现二叉查找树和二叉堆.二叉树是链式存储结构,用的是二叉 ...

  4. 《PHP程序员面试笔试宝典》——如何克服面试中紧张的情绪?

    本文摘自<PHP程序员面试笔试宝典>. PHP面试技巧分享,PHP面试题,PHP宝典尽在"琉忆编程库". 面试的成功与否,往小的方面讲,直接关系到求职者的工作问题,往大 ...

  5. suse 12 部署chrony时间同步服务器

    文章目录 1.ntp和chrony的区别 1.1.关于chrony 1.2.chronyd的优势 2.环境介绍 3.部署chrony 4.配置chrony 4.1.配置文件解析 4.2.查看chron ...

  6. windows server 2016 2019修改远程端口操作

    一.修改3389远程端口 1,按"win+r"快捷键,在对话框中输入regedit 2, 找到路径 \HKEY_LOCAL_MACHINE\SYSTEM\CurrentContro ...

  7. 新建一个scrapy项目

    此次是做一个豆瓣的top250信息的抓取 首先打开pycharm 在pycharm的下端的Terminal中输入scrapy startproject douban 此时系统就生成了以下文件(spid ...

  8. Docker学习笔记(详细)

    目录 01 介绍 02 Docker安装 03 Docker常用命令 04 Docker镜像 05 Docker容器数据卷 06 Dockerfile解析 Dockerfile构建过程解析 Docke ...

  9. Codeforces Round #770 (Div. 2)D

    传送门 题目大意: 交互题, n ( 4 ≤ n ≤ 1000 ) n(4\leq n\leq1000) n(4≤n≤1000)个数字组成的数列 a 1 , a 2 , - , a n ( 0 ≤ a ...

  10. WPS:字母自动变大写的解决办法

    设置中: