Redis 字典

基本语法

字典是Redis中的一种数据结构,底层使用哈希表实现,一个哈希表中可以存储多个键值对,它的语法如下,其中KEY为键,field和value为值(也是一个键值对):

HSET key field value

根据Key和field获取value:

HGET key field

哈希表

数据结构

dictht

dictht是哈希表的数据结构定义:

  • table:哈希表数组,数组中的元素是dictEntry类型的
  • size:哈希表数组的大小
  • sizemask:哈希表大小掩码,一般等于size-1
  • used:已有节点的数量(存储键值对的数量)
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;

dictEntry

dictEntry是哈希表节点的结构定义:

  • key:键值对中的键
  • v:键值对中的值
  • next:由于会出现哈希冲突,所以next是指向下一个节点的指针
typedef struct dictEntry {
void *key; // 键
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v; // 值
struct dictEntry *next; // 指向下一个节点的指针
} dictEntry;

dict

dict是Redis中字典的结构定义:

  • type:指向dictType的指针
  • privdata
  • ht[2]:一个dictht类型的数组,数组大小为2,保存了两个哈希表,rehash时使用
  • rehashidx:记录了当前rehash的进度
  • pauserehash:rehash暂停标记,大于0表示没有进行rehash
typedef struct dict {
dictType *type; //
void *privdata; // 私有数据
dictht ht[2]; // 保存了两个哈希表
long rehashidx; // rehash的进度标记
int16_t pauserehash;
} dict; typedef struct dictType {
uint64_t (*hashFunction)(const void *key);
void *(*keyDup)(void *privdata, const void *key);
void *(*valDup)(void *privdata, const void *obj);
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
int (*expandAllowed)(size_t moreMem, double usedRatio);
} dictType;

哈希冲突

一个键值对放入哈希表的时候,会根据key的值,计算一个hash值,然后根据hash值与哈希表大小掩码做与运算得到一个索引值,索引值决定元素放入哪个哈希桶中(落入哈希表数组哪个索引位置处)。

 // 计算hash值
hash = dictHashKey(d,key)
// 计算索引
idx = hash & d->ht[table].sizemask;

在进行哈希计算的时候,不可避免会出现哈希冲突,出现哈希冲突的时候,Redis采用链式哈希解决冲突,也就是落入同一个桶中的元素,使用链表将这些冲突的元素链起来(dictEntry中的next指针)。

rehash

由于Redis采用链式哈希解决冲突,那么在冲突频繁的场景下,链表会变得越来越长,这种情况下查找效率是比较低下的,需要遍历链表对比KEY的值来获取数据,为了处理效率低下的问题,需要对哈希表进行扩容,扩容的过程称为rehash。

在dict结构替中ht保存了两个哈希表,ht[0]用于数据正常的增删改查,ht[1]用于rehash:

(1)正常情况下,所有的增删改查操作都在ht[0]中进行;

(2)需要进行rehash时,会使用ht[1]建立新的哈希表,并将ht[0]中的数据迁移到ht[1]中;

(3)迁移完成后,ht[0]的空间被释放,然后将ht[1]地址赋给ht[0],ht[1]的大小被设为0,ht[0]重新接收正常的请求,回到了第(1)步的状态;

rehash的触发条件
/* 判断是否需要扩容 */
static int _dictExpandIfNeeded(dict *d)
{
/* 如果已经处于rehash状态中直接返回 */
if (dictIsRehashing(d)) return DICT_OK; /* 如果ht[0]的大小为0,意味着哈希表为空,此时做初始化操作 */
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); /*如果已经存储的节点数量大于或等于哈希表数组的大小,并且跨域扩容或者(节点数量/哈希表数组大小)大于一个比例,同时根据字典的类型判断是否允许分配内存*/
if (d->ht[0].used >= d->ht[0].size &&
(dict_can_resize ||
d->ht[0].used/d->ht[0].size > dict_force_resize_ratio) &&
dictTypeExpandAllowed(d))
{
// 进行扩容
return dictExpand(d, d->ht[0].used + 1);
}
return DICT_OK;
} /* 由于扩容需要分配内存,这里检查字典类型分配是否被允许*/
static int dictTypeExpandAllowed(dict *d) {
if (d->type->expandAllowed == NULL) return 1;
return d->type->expandAllowed(
_dictNextPower(d->ht[0].used + 1) * sizeof(dictEntry*),
(double)d->ht[0].used / d->ht[0].size);
}

d->ht[0].used/d->ht[0].size : 节点数量与哈希表数组大小的比例,称作负载因子

dict_force_resize_ratio 的默认值是 5。

  1. ht[0]的大小为0,此时哈希表是空的,相当于对哈希表做一个初始化的操作。
  2. 如果哈希表中存储的节点数量大于或者等于哈希表数组的大小,并且哈希表可以扩容或者负载因子大于dict_force_resize_ratio(默认值为5),根据字典的类型判断允许分配内存,满足这三个条件开始扩容。

dict_can_resize

dict_can_resize用来判断哈希表是否可以扩容,有两种状态,值分别为1和0,1代表可以扩容,0代表禁用扩容:

void dictEnableResize(void) {
dict_can_resize = 1;
} void dictDisableResize(void) {
dict_can_resize = 0;
}

updateDictResizePolicy中对dict_can_resize的状态进行了控制,当前没有RDB子进程并且也没有AOF子进程时设置dict_can_resize状态为可扩容:


void updateDictResizePolicy(void) {
// 没有RDB子进程并且也没有AOF子进程
if (server.rdb_child_pid == -1 && server.aof_child_pid == -1)
dictEnableResize(); // 启用扩容
else
dictDisableResize(); // 禁用扩容
}
扩容大小

从代码中可以看到,扩容后哈希表数组的大小为已经存储的节点数量+1:

// 进行扩容
return dictExpand(d, d->ht[0].used + 1);

一些旧版本中扩容后的大小为已存储节点数量的2倍:

dictExpand(d, d->ht[0].used*2);

渐进式hash

当哈希表存储节点内容比较多时,需要将原来的节点一个一个拷贝到新的哈希表中,此时Redis主线程无法执行其他请求,造成阻塞,影响性能,为了解决这个问题,引入了渐进式hash。

渐进式hash并不会一次把旧节点全部拷贝到新的哈希表中,而是分多次渐进式的完成拷贝,其中rehashidx记录了迁移进度,每一次迁移的过程中会更新rehashidx的值,下一次进行数据迁移的时候,从rehashidx的位置开始迁移,在dictRehash中可以看到迁移的处理:

  1. 方法传入了一个参数n,代表本次需要迁移几个哈希桶
  2. 根据需要迁移哈希桶的数量,循环处理每一个哈希桶:
    • 如果当前哈希桶中为空,继续下一个桶的处理rehashidx++
    • 如果当前哈希桶不为空,将当前桶中的所有节点迁移到新的哈希表中,然后更新rehashidx的值继续处理下一个桶
  3. 如果已经处理够了n个桶,或者哈希表的所有数据已经迁移完毕,则结束迁移。
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
if (!dictIsRehashing(d)) return 0;
// 循环处理每一个哈希桶,n为需要迁移哈希桶的数量
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;
assert(d->ht[0].size > (unsigned long)d->rehashidx);
// 如果当前哈希桶没有存储数据
while(d->ht[0].table[d->rehashidx] == NULL) {
// rehashidx的值是哈希表数组的某个索引值(指向了某个哈希桶),意味着当前迁移到数组的哪个索引位置处
d->rehashidx++; // 继续下一个桶
if (--empty_visits == 0) return 1;
} de = d->ht[0].table[d->rehashidx];
// 如果当前的哈希桶中存储着数据,将哈希桶存储的所有数据迁移到新的哈希表中
while(de) {
uint64_t h; nextde = de->next;
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
d->ht[0].used--;
d->ht[1].used++;
de = nextde;
}
d->ht[0].table[d->rehashidx] = NULL;
// rehashidx,继续迁移下一个哈希桶
d->rehashidx++;
} /* 判断ht[0]的节点是否迁移完成 */
if (d->ht[0].used == 0) {
// 释放ht[0]的空间
zfree(d->ht[0].table);
// 将ht[0]指向ht[1]
d->ht[0] = d->ht[1];
// 重置ht[1]的大小为0
_dictReset(&d->ht[1]);
// 设置rehashidx,-1代表rehash结束
d->rehashidx = -1;
return 0;
} /* More to rehash... */
return 1;
}

_dictRehashStep

_dictRehashStep中可以看到调用dictRehash时,每次迁移哈希桶的数量为1:

static void _dictRehashStep(dict *d) {
if (d->pauserehash == 0) dictRehash(d,1);
}

总结

  1. Redis字典底层使用哈希表实现。

  2. 键值对放入哈希表的时候,会根据key的值,计算hash值,出现哈希冲突的时候,Redis采用链式哈希解决冲突,使用链表将这些冲突的元素链起来。

  3. 由于Redis采用链式哈希解决冲突,那么在冲突频繁的场景下,链表会变得越来越长,这种情况下查找效率是比较低下的,需要遍历链表对比KEY的值来获取数据,为了处理效率低下的问题,需要对哈希表进行扩容,扩容的过程称为rehash。

  4. 当哈希表存储节点内容比较多时,进行rehas的时候主线程无法执行其他请求,造成阻塞,影响性能,所以采用了渐进式hash,渐进式hash并不会一次把旧节点全部拷贝到新的哈希表中,而是分多次渐进式的完成拷贝。

参考

黄健宏《Redis设计与实现》

极客时间 - Redis源码剖析与实战(蒋德钧)

美团针对Redis Rehash机制的探索和实践

Redis版本:redis-6.2.5

【Redis】字典的更多相关文章

  1. redis 字典

    redis 字典 前言 借鉴了 黄健宏 的 <<Redis 设计与实现>> 一书, 对 redis 源码进行学习 欢迎大家给予意见, 互相沟通学习 概述 字典是一种用于存储键值 ...

  2. Redis 字典的实现

    [Redis 字典的实现] 注意 dict 类型使用了两个指针,分别指向两个哈希表. 其中, 0 号哈希表(ht[0])是字典主要使用的哈希表, 而 1 号哈希表(ht[1])则只有在程序对 0 号哈 ...

  3. 阿里面试官:HashMap 熟悉吧?好的,那就来聊聊 Redis 字典吧!

    最近,小黑哥的一个朋友出去面试,回来跟小黑哥抱怨,面试官不按套路出牌,直接打乱了他的节奏. 事情是这样的,前面面试问了几个 Java 的相关问题,我朋友回答还不错,接下来面试官就问了一句:看来 Jav ...

  4. Redis 字典结构细谈

    Redis 字典底层基于哈希表实现. 一.哈希表结构 1.dictht: typedef struct dictht { dictEntry **table; //哈希表数组,存储具体的键值对元素,对 ...

  5. REDIS 字典数据结构

    对于REDIS来讲  其实就是一个字典结构,key ---->value  就是一个典型的字典结构 [当然  对于vaule来讲的话,有不同的内存组织结构 这是后话] 试想一个这样的存储场景: ...

  6. redis字典的底层实现hashTable

    Redis的字典使用哈希表作为底层实现.一个哈希表里面可以有多个哈希表节点,而每个哈希表节点就保存了字典中的一个键值对 哈希表的数据结构为 table属性是一个数组,数组中的每个元素都是指向dictE ...

  7. 《闲扯Redis七》Redis字典结构的底层实现

    一.前言 上节<闲扯Redis六>Redis五种数据类型之Hash型 中说到 Hash(哈希对象)的底层实现有: 1.ziplist 编码的哈希对象使用压缩列表作为底层实现 2.hasht ...

  8. 《闲扯Redis八》Redis字典的哈希表执行Rehash过程分析

    一.前言 随着操作的不断执行, 哈希表保存的键值对会逐渐地增多或者减少, 为了让哈希表的负载因子(load factor)维持在一个合理的范围之内, 当哈希表保存的键值对数量太多或者太少时, 程序需要 ...

  9. redis字典

    字典作为一种保存键值对的数据结构,在redis中使用十分广泛,redis作为数据库本身底层就是通过字典实现的,对redis的增删改查实际上也是构建在字典之上. 一.字典的结构

  10. redis字典快速映射+hash釜底抽薪+渐进式rehash | redis为什么那么快

    前言 相信你一定使用过新华字典吧!小时候不会读的字都是通过字典去查找的.在Redis中也存在相同功能叫做字典又称为符号表!是一种保存键值对的抽象数据结构 本篇仍然定位在[redis前传]系列中,因为本 ...

随机推荐

  1. Spring-Bean标签属性scope范围

    scope:指对象的作用范围,取值如下 1.singleton:默认值,单例的 2.prototype:多例的 3.request:WEB项目,Spring创建一个Bean的对象,把对象存入到requ ...

  2. Filebeat和logstash 使用过程中遇到的一些小问题记录

    一.filebeat 收集软链文件日志 1.1.场景 由于我们新部署的Nginx 日志都是采用的软链的形式. lrwxrwxrwx 1 root root 72 Apr 6 00:00 jy.baid ...

  3. VsCode 常用插件清单

    插件离线安装说明 在一些内网开发环境中,无法做到在线安装,这个时候就需要对插件进行离线安装 了 打开 VSCode 插件市场网址 Extensions for the Visual Studio fa ...

  4. LAN交换机自学习算法

    LAN交换机自学习算法 提示 第二层交完全忽略帧的数据部分协议,仅根据第二层以太网的MAC地址做出转发决策. MAC地址表有时又被称作内容可编址内存(CAM)表 检查源MAC地址 如果源MAC地址不存 ...

  5. Machine Learning 02 学习笔记 卷积、感知机、神经网络

    理解卷积公式. 卷积的物理意义. 图像的卷积操作. 卷积神经网络. 卷积的三层含义. 感知机. 感知机的缺陷. 总结. 神经网络. 缺陷. 激活函数

  6. [已解决] 含gorm、sqlite3包的go程序构建失败 C:\Program Files\Go\pkg\tool\windows_amd64\link.exe: running gcc failed: exit status 1

    gorm官方文档教程实例,构建出现错误.C:\Program Files\Go\pkg\tool\windows_amd64\link.exe: running gcc failed: exit st ...

  7. ASP.NET Core的几种服务器类型[共6篇]

    作为ASP.NET CORE请求处理管道的"龙头"的服务器负责监听和接收请求并最终完成对请求的响应.它将原始的请求上下文描述为相应的特性(Feature),并以此将HttpCont ...

  8. Bootstrap Blazor 组件库 Row 布局组件(栅格系统)

    原文链接:https://www.cnblogs.com/ysmc/p/16133351.html 在 Bootstrap 中,栅格相信大家都很熟悉,简直就是布局神器啊,Bootstrap Blazo ...

  9. 这个API Hub厉害了,收录了钉钉企业微信等开放Api,还能直接调试

    01 此前时不时会有一些研发小伙伴和我诉苦,说很多企业由于人力财力限制或者需求不强,会直接购买使用第三方的开放API,这样一来, 一则由于开放项目不是量身定制的,寻找自己合适的接口也要搜索调研蛮多时间 ...

  10. Hyperledger Fabric 通道配置文件和容器环境变量详解

    摘要 Fabric 网络启动的过程中需要进行大量配置,新学时对各个配置的作用一无所知,这导致我曾在网络出问题时先对配置文件的内容进行排列组合后再祈祷它能在某个时刻顺利运行,因此掌握 fabric 各个 ...