模板题:B3609 [图论与代数结构 701] 强连通分量

题目描述

给定一张 n 个点 m 条边的有向图,求出其所有的强连通分量。

注意,本题可能存在重边和自环。

输入格式

第一行两个正整数 n , m ,表示图的点数和边数。

接下来 m 行,每行两个正整数 u 和 v 表示一条边。

输出格式

第一行一个整数表示这张图的强连通分量数目。

接下来每行输出一个强连通分量。第一行输出 1 号点所在强连通分量,第二行输出 2 号点所在强连通分量,若已被输出,则改为输出 3 号点所在强连通分量,以此类推。每个强连通分量按节点编号大小输出。

本题让我们求出强连通分量的数量以及各强连通分量所包含的点。
解决这个问题需要用到taryan算法,下面简要介绍一下该算法的实现。

定义如下概念:
dfn[x]
可以这么理解,对一张图上所有没有遍历过的点进行dfs遍历,dfn[x]就是x点被遍历到的次序。又称dfs序。
low[x]
x所能到达的点中最小的dfs序

在一个强连通分量中,每两个点都是可以互相到达的,那么如果对于点x,low[x]!=dfn[x],说明x可以访问到比它早遍历的点。

若dfn[x]=low[x],说明点x能到达的dfs序最小的点就是x,找到了一个新的强连通分量。

使用栈存储遍历途中经过的点。

代码

#include<bits/stdc++.h>
using namespace std;
const int h=10001;
int head[h],last[h*10],to[h*10],tot=0;
void add_edge(int x,int y){
tot++;
last[tot]=head[x];
head[x]=tot;
to[tot]=y;
} int cnt=0;//标记强连通分量的数量
int timedrop=0;//标记每个点被访问的“时间”
int dfn[h];//dfn存的是这一点被访问的时间
int low[h];//low存的是 这个点可以到达的 “访问时间”最早的点
int belong[h];//存储某个点所属的强连通分量的编号
vector<int>scc[h];
stack<int>s;
bool instack[h];//标记这个点在不在栈内
bool printed[h];//存储该强连通分量是否被输出过
void dfs(int x){
//这是整个程序的核心部分,即如何求强连通分量 timedrop++;
dfn[x]=timedrop;//标记这个点被访问到的时间
low[x]=timedrop;//当前这个点能到达的“访问时间”最早的点只有它自己,以后可能会更新
s.push(x);//将这一点压入栈中
instack[x]=1;
for(int i=head[x];i!=0;i=last[i]){
//这里开始遍历该点可以到达的点,更新这一点的low
int y=to[i];
if(!dfn[y]){//这一点还没有被访问
dfs(y);//那么我们先得到这一点的dfn与low
low[x]=min(low[x],low[y]);//然后用这一点更新当前点
}
else
if(instack[y])//如果这一点在栈中,那这肯定是一个在x之前被访问的点
low[x]=min(low[y],low[x]);
//如果dfn[y]>0且它不在栈中呢?
//那么y已经找到了自己的强连通分量,和x没有关系了
}
if(dfn[x]==low[x]){
//这说明x不能到达在它之前被访问的点
//那么x就是它所在的强连通分量中第一个被访问的点
//并且在这个强连通分量中的所有点已经被压入栈中
//把这些点“取出”即可
cnt++;//新强连通分量内所有的点已经找出
while(s.top()!=x){
int q=s.top();
belong[q]=cnt;
instack[q]=0;
scc[cnt].push_back(q);
s.pop();
}
belong[x]=cnt;
instack[x]=0;
scc[cnt].push_back(x);
s.pop();
} }
int n,m;
int main(){
scanf("%d%d",&n,&m);
//建图
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
add_edge(a,b);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
dfs(i);
printf("%d\n",cnt);
//使用sort对每个强连通分量内的点进行升序排列(以前我也不知道)
for(int i=1;i<=cnt;++i)
sort(scc[i].begin(),scc[i].end());
for(int i=1;i<=n;i++){
int y=belong[i];
if(!printed[y]){
for(int j=0;j<scc[y].size();j++)
printf("%d ",scc[y][j]);
printf("\n");
printed[y]=1;
}
else
continue;
}
return 0;
}

强连通分量与tarjan算法初步运用的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  5. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  6. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  7. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. 【强连通分量】tarjan算法及kosaraju算法+例题

    阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们 ...

随机推荐

  1. 【unity游戏入门】2 使用代码编写Hello Unity游戏

    作者 罗芭Remoo 2021年9月24日 第一章.许可证的安装 下载好Unity之后,我们还需要一个前置操作才可以进入Unity引擎----许可证. 当然不用担心,Unity是一个开放的引擎,一切以 ...

  2. 报错:selenium.common.exceptions.InvalidArgumentException: Message: invalid argument: missing 'name'

    代码运行到这:driver.add_cookie(cookies),报错了 相信坑了不少人,接下来是解决办法 driver.add_cookie(cookies) cookies = { " ...

  3. KingbaseES R6 集群通过备库clone在线添加新节点

    案例说明: KingbaseES R6集群可以通过图形化方式在线添加新节点,但是在添加新节点clone环节时,是从主库copy数据到新的节点,这样在生产环境,如果数据量大,将会对主库的网络I/O造成压 ...

  4. K8S Service_Ingress

    Service 在K8S的世界里,虽然每个Pod都会被分配一个单独的IP地址,但这个IP地址会随着Pod的销毁而消失 Service(服务)就是用来解决这个问题的核心该你啊 一个Service可以看作 ...

  5. 群晖-使用docker套件部署Prometheus+Grafana

    Docker 部署 Prometheus 说明: 先在群辉管理界面安装好docker套件,修改一下镜像源(更快一点) 所需容器如下 Prometheus Server(普罗米修斯监控主服务器 ) No ...

  6. torch.sort 和 torch.argsort

    定义 torch.sort(input,dim,descending) torch.argsort(input,dim,descending) 用法 torch.sort:对输入数据排序,返回两个值, ...

  7. losf命令详解

    一.概念:lsof全名list opened files,也就是列举系统中已经被打开的文件,进程打开的端口(TCP.UDP).linux环境中,任何事物都是文件,设备是文件,目录是文件,甚至socke ...

  8. Prometheus 监控 Kubernetes Job 资源误报的坑

    转载自:https://www.qikqiak.com/post/prometheus-monitor-k8s-job-trap/ 昨天在 Prometheus 课程辅导群里面有同学提到一个问题,是关 ...

  9. 使用容器运行的minio配置https(TLS)访问

    使用certgen生成证书 下载地址:https://github.com/minio/certgen/releases/tag/v0.0.2 下载地址:https://files.cnblogs.c ...

  10. filebeat直接给es传输日志,自定义索引名,自定义多个索引文件

    官方文档地址: https://www.elastic.co/guide/en/beats/filebeat/7.3/elasticsearch-output.html https://www.ela ...