模板题:B3609 [图论与代数结构 701] 强连通分量

题目描述

给定一张 n 个点 m 条边的有向图,求出其所有的强连通分量。

注意,本题可能存在重边和自环。

输入格式

第一行两个正整数 n , m ,表示图的点数和边数。

接下来 m 行,每行两个正整数 u 和 v 表示一条边。

输出格式

第一行一个整数表示这张图的强连通分量数目。

接下来每行输出一个强连通分量。第一行输出 1 号点所在强连通分量,第二行输出 2 号点所在强连通分量,若已被输出,则改为输出 3 号点所在强连通分量,以此类推。每个强连通分量按节点编号大小输出。

本题让我们求出强连通分量的数量以及各强连通分量所包含的点。
解决这个问题需要用到taryan算法,下面简要介绍一下该算法的实现。

定义如下概念:
dfn[x]
可以这么理解,对一张图上所有没有遍历过的点进行dfs遍历,dfn[x]就是x点被遍历到的次序。又称dfs序。
low[x]
x所能到达的点中最小的dfs序

在一个强连通分量中,每两个点都是可以互相到达的,那么如果对于点x,low[x]!=dfn[x],说明x可以访问到比它早遍历的点。

若dfn[x]=low[x],说明点x能到达的dfs序最小的点就是x,找到了一个新的强连通分量。

使用栈存储遍历途中经过的点。

代码

#include<bits/stdc++.h>
using namespace std;
const int h=10001;
int head[h],last[h*10],to[h*10],tot=0;
void add_edge(int x,int y){
tot++;
last[tot]=head[x];
head[x]=tot;
to[tot]=y;
} int cnt=0;//标记强连通分量的数量
int timedrop=0;//标记每个点被访问的“时间”
int dfn[h];//dfn存的是这一点被访问的时间
int low[h];//low存的是 这个点可以到达的 “访问时间”最早的点
int belong[h];//存储某个点所属的强连通分量的编号
vector<int>scc[h];
stack<int>s;
bool instack[h];//标记这个点在不在栈内
bool printed[h];//存储该强连通分量是否被输出过
void dfs(int x){
//这是整个程序的核心部分,即如何求强连通分量 timedrop++;
dfn[x]=timedrop;//标记这个点被访问到的时间
low[x]=timedrop;//当前这个点能到达的“访问时间”最早的点只有它自己,以后可能会更新
s.push(x);//将这一点压入栈中
instack[x]=1;
for(int i=head[x];i!=0;i=last[i]){
//这里开始遍历该点可以到达的点,更新这一点的low
int y=to[i];
if(!dfn[y]){//这一点还没有被访问
dfs(y);//那么我们先得到这一点的dfn与low
low[x]=min(low[x],low[y]);//然后用这一点更新当前点
}
else
if(instack[y])//如果这一点在栈中,那这肯定是一个在x之前被访问的点
low[x]=min(low[y],low[x]);
//如果dfn[y]>0且它不在栈中呢?
//那么y已经找到了自己的强连通分量,和x没有关系了
}
if(dfn[x]==low[x]){
//这说明x不能到达在它之前被访问的点
//那么x就是它所在的强连通分量中第一个被访问的点
//并且在这个强连通分量中的所有点已经被压入栈中
//把这些点“取出”即可
cnt++;//新强连通分量内所有的点已经找出
while(s.top()!=x){
int q=s.top();
belong[q]=cnt;
instack[q]=0;
scc[cnt].push_back(q);
s.pop();
}
belong[x]=cnt;
instack[x]=0;
scc[cnt].push_back(x);
s.pop();
} }
int n,m;
int main(){
scanf("%d%d",&n,&m);
//建图
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
add_edge(a,b);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
dfs(i);
printf("%d\n",cnt);
//使用sort对每个强连通分量内的点进行升序排列(以前我也不知道)
for(int i=1;i<=cnt;++i)
sort(scc[i].begin(),scc[i].end());
for(int i=1;i<=n;i++){
int y=belong[i];
if(!printed[y]){
for(int j=0;j<scc[y].size();j++)
printf("%d ",scc[y][j]);
printf("\n");
printed[y]=1;
}
else
continue;
}
return 0;
}

强连通分量与tarjan算法初步运用的更多相关文章

  1. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  2. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

  3. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  4. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  5. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  6. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  7. 『图论』有向图强连通分量的Tarjan算法

    在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...

  8. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  9. 【强连通分量】tarjan算法及kosaraju算法+例题

    阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们 ...

随机推荐

  1. QFile 对文件进行读写操作

    QFile 对文件进行读写操作 1 QFile 进行读写操纵 2 QFile file(pah ) 文件路径 3 读  file.open(打开方式)  file.readAll(). file.re ...

  2. 第九十六篇:恶补JS基础

    好家伙,来补基础啦,补JS的基础 先来一些概念性的东西 1.什么是JavaScript?  javaScript的简写形式就是JS,一种广泛用于客户端Web开发的脚本语言,常用来给HTML网页添加动态 ...

  3. 第四十一篇:Vue生命周期(二)

    好家伙,书接上回 上图:(Vue官网中Vue实例图片的下半张) 以下为解释: 5.1.1. mounted执行完后,表示整个Vue实例已经初始化完毕了; 此时,组件已经脱离了创建阶段;进入到运行阶段 ...

  4. multiprocessing 让子进程忽略信号,手动关闭子进程

    起因 同事想要写一个代码,主进程中监听SIGINT.SIGTERM信号退出,并关闭启动的子进程,代码类似这样 import signal import sys import time from mul ...

  5. vue中处理过内存泄露处理方法

    1>意外的全局变量函数中意外的定义了全局变量,每次执行该函数都会生成该变量,且不会随着函数执行结束而释放. 2>未清除的定时器定时器没有清除,它内部引用的变量,不会被释放. 3>脱离 ...

  6. KingbaseES V8R3集群管理维护案例之---集群迁移单实例架构

    案例说明: 在生产中,需要将KingbaseES V8R3集群转换为单实例架构,可以采用以下方式快速完成集群架构的迁移. 适用版本: KingbaseES V8R3 当前数据库版本: TEST=# s ...

  7. KingbaseES R6 手工创建主备流复制案例

    ​ 数据库版本: TEST=# select version(); version ---------------------------------------------------------- ...

  8. 命令行配置Windows高级防火墙

    今天正好看到个帖子,询问如何通过命令行配置防火墙策略中远程IP的地址,特别是添加新的地址. 就是图中Scope里Remote IP address的地址. 第一反应就是用netsh firewall来 ...

  9. 1_Maven

    一. 引言 1.1 项目管理问题 项目中jar包资源越来越多, jar包的管理越来越沉重 1.1.1 繁琐 要为每个项目手动导入所需的jar, 需要搜集全部的jar 1.1.2 复杂 项目中的jar如 ...

  10. 手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集(含源码)

    目录 前言 一.工具包位置 二.图像采集与色彩空间转换 1.文件读写 2.实现图片读取 3.使用算子cvtColor实现颜色空间转换 三.从摄像头采集图像 1.Camera类 2.属性节点 3.实现摄 ...