问题描述

给定一个 DAG,求一个拓扑序,使得节点 \(i\) 的拓扑序 \(\in [l_i,r_i]\)。

题解

首先进行一个预处理:对于所有 \(u\),令 \(\forall (v,u)\in E, l_u\leftarrow \max(l_u,l_v+1),\forall (u,v)\in E, r_u\leftarrow \min(r_u,r_v-1)\)。

也就是 \(l_u\) 对任何可能的拓扑序的最小值取 \(\max\),\(r_u\) 同理。若此时有节点 \(l_u>r_u\) 则无解。

将所有区间按 \(r\) 端点排序,然后以 \(l\) 端点为关键字插入大根堆中。从大到小依次考虑拓扑序 \(i\) 应为哪个节点,将所有 \(r_u\ge i\) 的节点插入堆中,然后取出 \(l_u\) 最大的,若 \(l_u>i\) 则显然无解,否则直接令 \(topo_i=u\),弹堆。由贪心交换性质应该可以证明这是可能的最优情况,如果这样都无解那么一定无解。至于正确性,我们发现如果当前存在 \(j>i\) 使得 \((topo_j,topo_i)\in E\),则会有 \(l_{topo[i]}>l_{topo[j]}\),与每次取出 \(l\) 最大的区间矛盾。

经典问题 1 —— DAG 上区间限制拓扑序的更多相关文章

  1. bzoj 1880 [Sdoi2009]Elaxia的路线(最短路+拓扑序)

    Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...

  2. [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA

    在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...

  3. Codeforce 721C DP+DAG拓扑序

    题意 在一个DAG上,从顶点1走到顶点n,路径上需要消费时间,求在限定时间内从1到n经过城市最多的一条路径 我的做法和题解差不多,不过最近可能看primer看多了,写得比较复杂和结构化 自己做了一些小 ...

  4. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  5. DP入门(2)——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题 ...

  6. 9.2 DAG上的动态规划

    在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以 ...

  7. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  8. NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序

    原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...

  9. [NOIP2017]逛公园 最短路图 拓扑序DP

    ---题面--- 题解: 挺好的一道题. 首先我们将所有边反向,跑出n到每个点的最短路,然后f[i][j]表示从i号节点出发,路径长比最短路大j的方案数. 观察到,如果图中出现了0环,那么我们可以通过 ...

  10. DAG上dp思想

    DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...

随机推荐

  1. LcdTools如何添加图片画面到PX01显示

    LcdTools打开点屏工程,切到"画面设置"栏,在"画面资源"栏选择"Picture"画面,先设置图片ID编号(此编号用于PG对图片编号, ...

  2. 题解 UVA10285 最长的滑雪路径 Longest Run on a Snowboard

    Solution 双倍经验 就是记搜嘛. 搞一个二维数组记录一下当前的最长滑雪路径,其他和普通 dfs 没什么两样. 向 \(4\) 个方向搜索,如果高度符合就 \(+1\) . 多测要注意数组初始化 ...

  3. 八、Django的组件

    8.1.中间件 中间件顾名思义,是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影响 ...

  4. Java 编码那些事(一)

    编码 做Web的同学,最开始一定遇到过乱码问题,工作这么久,一定听说过Unicode, GB2312等编码.典型的记事本选择的四种选项:ANSI,Unicode,Unicode big endian, ...

  5. webscraper 无代码爬虫

    官网:https://www.webscraper.io/web-scraper-first-time-install webscraper 简介 Web Scraper 是一款免费的,适用于普通用户 ...

  6. Python基础之面向对象:1、面向对象及编程思想

    一.人狗大战 1.需求 用代码模拟人.狗打架的小游戏 人和狗种类不同,因此双方的属性各不相同 推导一: 人和狗各有不同属性 使用字典方式储存属性较为方便,并可储存多种属性 # 1.在字典内储存'人'属 ...

  7. 2流高手速成记(之七):基于Dubbo&Nacos的微服务简要实现

    本节内容会用到之前给大家讲过的这两篇: 2流高手速成记(之六):从SpringBoot到SpringCloudAlibaba 2流高手速成记(之三):SpringBoot整合mybatis/mybat ...

  8. Vue.js3.0练习题

    第一章:Vue 3.0 概述 1.选择题 1.1.在MVVM设计模式中,Model代表的是_______. A. 数据模型        B. 控制器       C. 视图      D.监听模型 ...

  9. 基于.NET 7 的 WebTransport 实现双向通信

    Web Transport 简介 WebTransport 是一个新的 Web API,使用 HTTP/3 协议来支持双向传输.它用于 Web 客户端和 HTTP/3 服务器之间的双向通信.它支持通过 ...

  10. YeserCMS

    这道题直接让我们查网站根目录的flag,我首先想到的是一句话木马,但是奈何找不到上传的接口啊,只好作罢, 在下载发现有个cmseasy的标识,明显是要提示我们这里是easycms,百度easycms的 ...