BZOJ

洛谷

\(Description\)

给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数。

\(n,q\leq3\times10^5\)。

\(Solution\)

\(p,a,b\)都在一条链上。

那么如果\(a\)是\(p\)的祖先,答案就是\(\min(dep[p],\ k)*(sz[p]-1)\)。可以\(O(1)\)计算。

如果\(a\)在\(p\)的子树中,答案就是\(\sum_{dis(a,p)\leq k}sz[a]-1\)。

对于第二种情况,实际就是对深度在\(dep[p]\sim dep[p]+k\)且处于\(p\)子树内的点的\(size\)求和。

以\(dep\)为下标,就是对\(p\)子树区间求和了。可以主席树/线段树合并。时空复杂度\(O(n\log n)\)。

也可以用树状数组维护深度为\(x\)的所有点的\(size\)和。类似天天爱跑步,在进入一棵子树时把\(Ans\)减去\(sum(dep[p],dep[p]+k)\),离开这棵子树时把\(Ans\)再加上\(sum(dep[p],dep[p]+k)\),就可以得到这棵子树的答案\(Ans\)了。

时间复杂度\(O(n\log n)\)。

用到的数组下标是深度,所以可以试下长链剖分。同样\(f[x][i]\)表示以\(x\)为根深度为\(i\)的点的\(size\)和。

长链剖分每次继承重儿子要把数组后移一位,而我们要求区间和,这样前缀和就不好维护了。但是我们可以维护后缀和。

复杂度\(O(n)\)。

为啥洛谷加了fread慢好多啊==

//36944kb	3808ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=3e5+5; int sz[N],dep[N],mxd[N],son[N],pos[N];
LL Ans[N],f[N];//f:后缀和 //LL!
char IN[MAXIN],*SS=IN,*TT=IN;
struct Edge
{
int Enum,H[N],nxt[N<<1],to[N<<1];
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
}T;
struct Quries
{
int Enum,H[N],nxt[N],id[N],k[N];
inline void AE(int ID,int K,int u)
{
id[++Enum]=ID, k[Enum]=K, nxt[Enum]=H[u], H[u]=Enum;
}
}Q; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void DFS1(int x,int fa)
{
int mx=-1;/*-1!*/ sz[x]=1;
for(int i=T.H[x],v; i; i=T.nxt[i])
if((v=T.to[i])!=fa)
dep[v]=dep[x]+1, DFS1(v,x), sz[x]+=sz[v], mxd[v]>mx&&(mx=mxd[v],son[x]=v);
mxd[x]=mx+1;
}
void DFS2(int x,int fa)
{
static int Index=0;
int px=pos[x]=++Index;// f[px]=sz[x]-1;
if(!son[x]) return;
DFS2(son[x],x), f[px]+=f[px+1];
for(int i=T.H[x],v; i; i=T.nxt[i])
if((v=T.to[i])!=fa && v!=son[x])
{
DFS2(v,x); int pv=pos[v];
for(int j=0,lim=mxd[v]; j<lim; ++j) f[px+j+1]+=f[pv+j];
f[px]+=f[pv];
}
LL sum=f[px];
for(int i=Q.H[x],mx=mxd[x]; i; i=Q.nxt[i])
{
int k=Q.k[i],id=Q.id[i];
Ans[id]=1ll*std::min(dep[x],k)*(sz[x]-1)+sum-(k>=mx?0:f[px+k+1]);
}
f[px]+=sz[x]-1;
} int main()
{
int n=read(),q=read();
for(int i=1; i<n; ++i) T.AE(read(),read());
for(int i=1; i<=q; ++i) Q.AE(i,read(),read());
DFS1(1,1), DFS2(1,1);
for(int i=1; i<=q; ++i) printf("%lld\n",Ans[i]); return 0;
}

BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)的更多相关文章

  1. BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)

    题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...

  2. BZOJ.3252.攻略(贪心 长链剖分/线段树)

    题目链接 贪心,每次选价值最大的一条到根的链.比较显然(不选白不选). 考虑如何维护这个过程.一个点的价值选了就没有了,而它只会影响它子树里的点,可以用DFS序+线段树修改.而求最大值也可以用线段树. ...

  3. [WC2010]重建计划(长链剖分+线段树+分数规划)

    看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径.设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复 ...

  4. 2018牛客网暑假ACM多校训练赛(第七场)I Tree Subset Diameter 动态规划 长链剖分 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round7-I.html 题目传送门 -  https://www.n ...

  5. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  6. 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)

    传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...

  7. 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)

    题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...

  8. Codeforces 1009 F. Dominant Indices(长链剖分/树上启发式合并)

    F. Dominant Indices 题意: 给一颗无向树,根为1.对于每个节点,求其子树中,哪个距离下的节点数量最多.数量相同时,取较小的那个距离. 题目: 这类题一般的做法是树上的启发式合并,复 ...

  9. P4292-[WC2010]重建计划【长链剖分,线段树,0/1分数规划】

    正题 题目链接:https://www.luogu.com.cn/problem/P4292 题目大意 给出\(n\)个点的一棵树,然后求长度在\([L,U]\)之间的一条路径的平均权值最大. 解题思 ...

随机推荐

  1. jquery----jquery中的属性的利用

    1.javascript addClass 利用document.getElementById("XX")找到document对象.然后再通过addClass("xxx& ...

  2. CF919F

    题意: Alice和Bob玩游戏,每人各有8张牌,牌的大小在0~4之间 每次操作,先手可以选择自己一张牌和对方一张牌求和后%5,将新的牌替代自己拿出的那张牌,以此类推,直到有一个人手中的牌全部是0,则 ...

  3. Expected one result (or null) to be returned by selectOne(), but found: 3

    Expected one result (or null) to be returned by selectOne(), but found: 3 返回应该是对象但是给的是list

  4. Nancy 自寄宿

    一:简介 Self Hosting 顾名思义,就是自己Host自己.也就是不需要依赖别的应用,而让应用本身就是服务.一个Console程序或者一个Winform程序都是一个应用,Self Hostin ...

  5. zookeeper 学习 客户端Acl操作笔记

    Acl = Access control list create /node2 node2data [zk: localhost:2181(CONNECTED) 14] addauth digest ...

  6. 【转】Crosswalk入门

    原文:https://www.mobibrw.com/2015/1934 Crosswalk是一款开源的web引擎.目前Crosswalk正式支持的移动操作系统包括Android和Tizen,在And ...

  7. python之PIL 二值图像处理和保存

    0. 1.参考 http://pszpcl.baike.com/article-77327.htmlwindows 图片右键:属性 详细信息 位深度位深度 用于指定图像中的每个像素可以使用的颜色信息数 ...

  8. [转]简单三步,用 Python 发邮件

    https://zhuanlan.zhihu.com/p/24180606 0. 前言 发送电子邮件是个很常见的开发需求.比如你写了个监控天气的脚本,发现第二天要下雨,或者网站上关注的某个商品降价了, ...

  9. 10个财务工作中常用的 Excel 万能公式

    1.多条件判断公式 =IF(AND(条件1,条件2...条件n),同时满足条件返回的值,不满足条件返回的值) =IF(OR(条件1,条件2...条件n),同时满足任一条件返回的值,不满足条件返回的值) ...

  10. exshop第6天

    发现grails mongodb插件中的一个BUG并进行了提交,grails项目管理人员还进行了回复,主要是配置failOnError 后不起作用了,不过项目负责人还是确认了这个问题,估计会比较快的解 ...