A Discriminative CNN Video Representation for Event Detection

Note here: it's a learning note on the topic of video representation, based on the paper below.

Link: http://arxiv.org/pdf/1411.4006v1.pdf

Motivation:

The use of improved Dense Trajectories (IDT) has led good performance on the task of event detection, while the performance of CNN based video representation is worse than that. The author argues the following three main reasons:

  • Lack of labeled video data to train good models.
  • Video level event labels are too coarse to finetune a pre-trained model for adapting the event detection task.
  • The use of average pooling to generate a discriminative video level representation from CNN frame level descriptors works worse than hand-crafted features like IDT.

Proposed Model:

This paper proposes a model mainly targetting at the third problem, namely how to build a cost-efficient and discrimintive video representation based on CNN.

1)     Firstly, we should extract frame-level descriptor:

We adopt M filters in the last convolutional layers as M latent concept classifiers. Each convolutional filter is corresponding to one latent concept, and each of it will apply on different location of the frame. So we’ll get responses of discrimintive latent concepts on different locations of the frame.

After that, we apply max-pooling operation on all concepts descriptors and concatenate different responses at the same location to form vectors each of which containing various concepts descriptions at this location.

By now, we’ve extract frame-level features.

(Actually, they didn’t do anything special at this step, they just give a new illustration of responses in CNN and rearrange those responses for further process.)

2)     Secondly, we need to encode a discrimintive video-level descriptor from all these frame-level descriptors:

They introduce and compare three different encoding methods in the paper.

However, as I’m not proficient in the mathematical meanings of them, I can just give a briefly look at them instead of going further.

Through experiment, they find out VLAD is better than other encoding methods. (You can refer to the paper for details about that experiment.)

"This is the first work on the video pooling of CNN descriptors and we broaden the encoding methods from local descriptors to CNN descriptors in video analysis."

(That's the takeaway in their work. They're the first to apply these encoding methods on the CNN descriptors. Previously, most of the works utilize Fisher Vector Encoding to encode a general feature of an image from local descriptors like HOG, SIFT, HOF and so on.)

3)     Lastly, we get a video-level descriptor and feed it into a SVM to do detection task.

Two Tricks:

1)     Spatial Pyramid Pooling: they apply four different CNN max-pooling operations to give more spatial locations for a single frame, which makes the descriptor more discrimintive. And that’s also more cost-friendly than applying spatial pyramid on raw frame.

2)     Representation Compression: they do Product Quntization to compress the final representation while still maintain or even slightly improve the original performance.

【CV】CVPR2015_A Discriminative CNN Video Representation for Event Detection的更多相关文章

  1. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  2. 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos

    Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...

  3. 【PSMA】Progressive Sample Mining and Representation Learning for One-Shot Re-ID

    目录 主要挑战 主要的贡献和创新点 提出的方法 总体框架与算法 Vanilla pseudo label sampling (PLS) PLS with adversarial learning Tr ...

  4. 【CV】ICCV2015_Learning Temporal Embeddings for Complex Video Analysis

    Learning Temporal Embeddings for Complex Video Analysis Note here: it's a review note on novel work ...

  5. 【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction

    Unsupervised Visual Representation Learning by Context Prediction Note here: it's a learning note on ...

  6. 【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics

    Unsupervised Learning of Spatiotemporally Coherent Metrics Note here: it's a learning note on the to ...

  7. 【CV】ICCV2015_Describing Videos by Exploiting Temporal Structure

    Describing Videos by Exploiting Temporal Structure Note here: it's a learning note on the topic of v ...

  8. 【ML】ICML2015_Unsupervised Learning of Video Representations using LSTMs

    Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new L ...

  9. 【实战问题】【3】iPhone无法播放video标签中的视频

    问题:视频都是MP4格式,视频可以在手机上正常播放.video标签中的视频在安卓点击可以播放,但在iPhone无法播放 解决方案: 1,视频编码格式问题,具体iPhone手机支持的是哪些格式可见官方的 ...

随机推荐

  1. javascript获取DOM对象三种方法

    1. getElementByID() getElementByID()方法可返回对拥有指定ID的第一个对象的引用 2. getElementByTagName() getElementByTagNa ...

  2. NSObject

    一.前言 该博客里面的方法均是看着苹果官方的API来解释的,一般都是常用的方法如有问题,请指出. 二.简介: 该类集成的是其本身,大家可以从任何一个类去向上追溯,都会发现最终的父类都是NSObject ...

  3. 17秋 软件工程 第六次作业 Beta冲刺 Scrum2

    17秋 软件工程 第六次作业 Beta冲刺 Scrum2 我们组转会成员:杰麟: 我们组新成员:宏庆. 各个成员冲刺期间完成的任务 世强:完成分页功能的演示: 陈翔:完成超级管理员后端login模块: ...

  4. select for update引发死锁分析

    本文针对MySQL InnoDB中在Repeatable Read的隔离级别下使用select for update可能引发的死锁问题进行分析. 1. 业务案例 业务中需要对各种类型的实体进行编号,例 ...

  5. 5、爬虫之scrapy框架

    一 scrapy框架简介 1 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Sc ...

  6. 【知识碎片】Mysql语句

    (1)mysql 更新最新的一条记录  ;

  7. mysql 日期操作 增减天数、时间转换、时间戳(转)

    转自http://www.cnblogs.com/wenzichiqingwa/archive/2013/03/05/2944485.html http://hi.baidu.com/juntao_l ...

  8. Mysql几种索引方式的区别及适用情况 (转)

    文章摘自http://blog.sina.com.cn/s/blog_4aca42510102v5l2.html Mysql目前主要有以下几种索引方式:FULLTEXT,HASH,BTREE,RTRE ...

  9. undefined == false 么

    今天碰到个问题,我需要去判断 undefined == false 会返回什么,想当然的以为会返回true,但是结果却返回的是false,这我就有点晕了,不是说undefined.null.0.NaN ...

  10. centos7搭建logstash

    前两节已经成功完成ek的搭建,还剩最后的一个日志上传的功能 依次执行如下命令 cd /home/elk wget https://artifacts.elastic.co/downloads/logs ...