参考:

http://blog.csdn.net/cham_3/article/details/52682479

以caffe工程自带的mnist数据集,lenet网络为例:

将lenet_train_test.prototxt文件进行一些修改即可得到lenet.prototxt文件

头部:

去除训练用的输入数据层,

layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "mean.binaryproto"
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mean_file: "mean.binaryproto"
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}

添加数据,

layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }
}

中间的部分:
conv1-pool1-conv2-pool2-ip1-relu1-ip2中间的这些层是相同的

尾部:

lenet_train_test.prototxt去除,

layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

添加,

layer {
name: "prob"
type: "Softmax"
bottom: "ip2"
top: "prob"
}

即可得到lenet.prototxt文件

以siftflow-fcn32s为例,说明:

打开trainval.prototxt文件,删除,

layer {
name: "data"
type: "Python"
top: "data"
top: "sem"
top: "geo"
python_param {
module: "siftflow_layers"
layer: "SIFTFlowSegDataLayer"
param_str: "{\'siftflow_dir\': \'../data/sift-flow\', \'seed\': 1337, \'split\': \'trainval\'}"
}
}

添加,

layer {
name: "input"
type: "Input"
top: "data"
input_param {
# These dimensions are purely for sake of example;
# see infer.py for how to reshape the net to the given input size.
shape { dim: 1 dim: 3 dim: 256 dim: 256 }
}
}

中间的网络层都是相同的,

尾部,删除两个网络的loss层,

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "score_sem"
bottom: "sem"
top: "loss"
loss_param {
ignore_label: 255
normalize: false
}
}
layer {
name: "loss_geo"
type: "SoftmaxWithLoss"
bottom: "score_geo"
bottom: "geo"
top: "loss_geo"
loss_param {
ignore_label: 255
normalize: false
}
}

即可得到deploy.prototxt文件  

  

  

caffe生成deploy.prototxt文件的更多相关文章

  1. 根据 train_test.prototxt文件生成 deploy.prototxt文件

    本文参考博文 (1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.net/sunshine_in_moon/a ...

  2. 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别

    本文以CaffeNet为例: 1. train_val.prototxt  首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...

  3. train_val.prototxt文件和deploy.prototxt文件开头的区别

    1.开头不同 对train_val.prototxt文件来说,开头部分定义训练和测试的网络及参数 对deploy.prototxt文件来说,开头部分定义实际运用场景的配置文件,其参数不定义数据来源,仅 ...

  4. Caffe中deploy.prototxt 和 train_val.prototxt 区别

    之前用deploy.prototxt 还原train_val.prototxt过程中,遇到了坑,所以打算总结一下 本人以熟悉的LeNet网络结构为例子 不同点主要在一前一后,相同点都在中间 train ...

  5. caffe中根据 *_train_test.prototxt文件生成 *_deploy.prototxt文件 (转载)

    见博客:http://blog.csdn.net/u010417185/article/details/52137825

  6. caffe之solver.prototxt文件参数设置

    caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1 ...

  7. caffe中通过prototxt文件查看神经网络模型结构的方法

    在修改propotxt之前我们可以对之前的网络结构进行一个直观的认识: 可以使用http://ethereon.github.io/netscope/#/editor 这个网址. 将propotxt文 ...

  8. 4'.deploy.prototxt

    1: 神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真 ...

  9. caffe的python接口学习(5):生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

随机推荐

  1. 【立体几何】Journey to Jupiter Gym - 101991J 立体几何模板

    https://cn.vjudge.net/problem/Gym-101991J 题目很长,其实就是给你一个正三角形,并且告诉你它的中点在Z轴上以及法向量,边长和顶点A的坐标(自由度已定),让你求A ...

  2. 【WordCount】实现(重做)

    Gitee项目地址: https://gitee.com/LIUJIA6/wordcount_implementation 需求说明: WordCount的需求可以概括为:对程序设计语言源文件统计字符 ...

  3. 最全的MonkeyRunner自动化测试从入门到精通(5)

    夜神模拟器的安装与配置步骤一:我们为什么会选择使用夜神模拟器呢? 众所周知,Android studio的模拟器运行速度也很快,可以媲美真机.虽然其运行速度很快,可以满足我们测试的需求.但仍存在以下问 ...

  4. git的简单玩法

    本篇笔记参考廖雪峰的git教程,为方便查看将命令部分提取并记录下来. 无意对原作的版权侵犯,如需要学习请到廖雪峰网站学习git 创建git仓库 # mkdir learngit && ...

  5. 【Linux】-NO.86.Linux.6.C.1.001-【CentOS 7 Install GCC】-

    1.0.0 Summary Tittle:[Linux]-NO.86.Linux.6.C.1.001-[CentOS 7 Install GCC]- Style:Java Series:Log4j S ...

  6. Docker:Docker machine(5)

    Docker machine Docker Machine的安全集成在Docker Toolbox中,是用户在Windows环境下使用docker并管理VirtualBox的一个终端: docker- ...

  7. cocos2dx JS layuot纯代码实现背景颜色渐变

    // view._partyBtnClassify.setBackGroundColorType(ccui.Layout.BG_COLOR_GRADIENT);// view._partyBtnCla ...

  8. form提交xml文件

    --为何ajax提交不了xml?--原因:Request.Form["Data"]这种获取参数方式,原本就不是mvc路由参数获取方式,这是Asp.net中webfrom页面获取参数 ...

  9. SPP空间金字塔池化技术的直观理解

    空间金字塔池化技术, 厉害之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作. 是后续许多金字塔技术(psp,aspp等)的起源,主要的目的都是为了获取场景语境信息,获取上 ...

  10. linux之tree命令

    linux下tree命令的用法解释 2018年03月22日 ⁄ RakSmart教程 ⁄ 共 583字 ⁄ 字号 小 中 大 ⁄ linux下tree命令的用法解释已关闭评论 tree命令,主要功能是 ...