3D Object Classification With Point Convolution —— 点云卷积网络
今天刚刚得到消息,之前投给IROS 2017的文章收录了。很久很久没有写过博客,今天正好借这个机会来谈谈点云卷积网络的一些细节。
1、点云与三维表达
三维数据后者说空间数据有很多种表达方式,比如:RGB-D 图像,体素图像,三维点云等。这些三维数据的表达方式各有特点:RGB-D 图像可以直接从Kinect 读到,而且是规整的,适合直接用于现存的图像处理框架。体素图像更直观的展示物体的三维形貌,更直接的表达物体表面空间位置关系,同时,很容易将图像中成功的方法推广到体素图像中。而三维点云的表达更加紧凑,同样分辨考虑情况下,三维点云的表达占更小的空间(三维点云可以认为是体素图像的紧凑编码,即记录体素图像中 occupied voxel 的坐标)。同时,LiDAR 点云转RGB - D 会有很多空洞。所以,我们致力于设计一种通用的方法,利用点云来分析物体表面所传达的信息。
2、点云卷积
卷积神经网络是深度学习中具有代表性的一种模型,很成功的解决了图像分割,识别,检测,分析,caption,questioning等不同层次的问题。根据我们的理解,卷积网络的成功之处在于巨大的容量,可以容纳更多信息,在流形中容易形成更好的连续性;从局部到整体层级式的映射,卷积核经过多层映射后有巨大的接受域,模型既含有局部信息又含有物体的整体信息;去中心化的结构,卷积过程中对所有的像素都没有主观偏好性。最让我们感兴趣的,是卷积这种操作通过综合周边信息和非线性映射来优化局部的表达,又通过局部表达的综合来给出整体描述。同时,和卷积配合的池化操作可以给模型带来微小的局部不变性。这些优良的性质启发了我们将卷积这种操作用在三维数据上。
最容易实现的三维卷积网络是在体素图像上进行三维卷积操作。但体素图像往往都有其缺点:1、所谓三维往往是2.5维,物体的自遮挡是无法忽略的,2、三维卷积操作需要多搜索一个维度,3*3*3的三维卷积核计算量近大于在图像上进行5*5卷积核的操作。同时,100*100*100的三维体素图像尺寸上相当于1000*1000的二维图像,所以三维卷积是比较昂贵的操作。3、三维体素图像(binary, VoxNet)含有大量的空白,也就是0,物体自遮挡,内部信息都是无法访问的。所以大量的卷积操作都不是很划算。所以我们考虑将卷积这种操作移植到点云上。
点云本身具有无序性。也就是对点云进行随意排序它对物体的表达都是一致的。对无序序列进行训练本身似乎听起来是一件不太可能的事情。当前阶段的分类网络都是以泛化(generalization)为主,训练样本如果是无序的,那么同一件东西则有完全 非近似 的表达,遑论统一。所以,IROS的工作介绍了如何在点云上建立顺序、卷积操作、以及最后形成网络的方法。
3D Object Classification With Point Convolution —— 点云卷积网络的更多相关文章
- ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测
ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链 ...
- CVPR2020论文解读:3D Object Detection三维目标检测
CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...
- 三维目标检测论文阅读:Deep Continuous Fusion for Multi-Sensor 3D Object Detection
题目:Deep Continuous Fusion for Multi-Sensor 3D Object Detection 来自:Uber: Ming Liang Note: 没有代码,主要看思想吧 ...
- Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition
张宁 Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for O ...
- Unity UGUI和特效(含粒子系统和3D Object)之间层级问题
撰写本文时使用Unity的版本为2017.4.10f1(64bit) 1.描述问题 需求:通过UGUI制作一个界面之后,我需要在界面的后面跟前面各添加一个特效. 问题:同一层级UI是最后渲染的,所以U ...
- CVPR2020:点云分析中三维图形卷积网络中可变形核的学习
CVPR2020:点云分析中三维图形卷积网络中可变形核的学习 Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Con ...
- 百度云+ KeePass 网络同步你的密码
百度云+ KeePass 网络同步你的密码 百度云一个目前不限流量不限格式能直链的网盘,速度在我这里很快,难得了!KeePass(小众介绍过 KeePass.) 是一个免费开源的密码管理类软件, ...
- 实时音视频互动系列(上):又拍云UTUN网络详解
如何定义实时音视频互动, 延迟 400ms 内才能无异步感 实时音视频互动如果存在1秒左右的延时会给交流者带来异步感,必须将视频播放延迟限制在400ms以内,才能给用户较好的交互体验. 当延迟控制在4 ...
- OpenStack云平台网络模式及其工作机制
转自:http://openstack.csdn.net/content.html?arcid=2808381 OpenStack云平台网络模式及其工作机制 网络,是OpenStack的部署中最容易出 ...
随机推荐
- 小甲鱼Python第十四课后习题
字符串格式化符号含义 符 号 说 明 %c 格式化字符及其ASCII码[>>> '%c' %97 'a'] %s ...
- es6冲刺02
1.Symbol es6新增的数据类型 1)概念 提供一个独一无二的值 let a=Symbol() let b=Symbol() 或 let c=Symbol.for('c') let d=Symb ...
- Mac上安装mysql-mython错误:mysql_config not found
1.正确安装MySQL 2.配置环境变量 export PATH="$PATH":/usr/local/mysql/bin 3.重启终端再进行安装 pip install mysq ...
- 前端工程化系列[03]-Grunt构建工具的运转机制
在前端工程化系列[02]-Grunt构建工具的基本使用这篇文章中,已经对Grunt做了简单的介绍,此外,我们还知道了该如何来安装Grunt环境,以及使用一些常见的插件了,这篇文章主要介绍Grunt的核 ...
- JS 正则表达式从地址中提取省市县
var add1 = '四川省西昌市航天路'; var add2 = '北京市北京市东城区前门大街1号' var add3 = '新疆维吾尔自治区乌鲁木齐市天山区中山路479号'; var add4 ...
- 修复恢复"可疑"的SQLServer数据库
今天机房突然断电,DB连不上了,提示 无法打开数据库'MyDB'.恢复操作已将该数据库标记为 SUSPECT. 原因是断电导致DB文件损坏 通过SQL Server Management Studio ...
- Catch a Memory Access Violation in C++
From: https://stackoverflow.com/questions/16612444/catch-a-memory-access-violation-in-c In C++, is ...
- 命令 上传项目到git中
点击Clone or dowload会出现一个地址,copy这个地址备用. 接下来就到本地操作了,首先右键你的项目,如果你之前安装git成功的话,右键会出现两个新选项,分别为Git Gui Here, ...
- 【JavaScript从入门到精通】第二课 初探JavaScript魅力-02
第二课 初探JavaScript魅力-02 变量 说起变量,我们不得不提起我们有一部比较古老的电视剧叫<包青天>.包青天有一把非常厉害的宝剑叫“尚方宝剑”,见到尚方宝剑有如见到皇帝.某种程 ...
- python2.7升级3.5教程 可用
1.查看Python版本: python -V 2.下载Python 3.5版本:wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.t ...