一、MongoDB Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

基本语法:

db.collection.mapReduce(
function() {emit(key,value);}, //map 函数
function(key,values) {return reduceFunction}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number
}
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将 key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

二、示例

我们通过下面的一个例子来理解上面的概念

mongodb的student集合中存在以下数据:

/* 1 */
{
"_id" : ObjectId("5c735e26b21aeac107319873"),
"stu_name" : "张三",
"course" : "英语",
"score" : 70,
"level" : "C"
} /* 2 */
{
"_id" : ObjectId("5c735e26b21aeac107319874"),
"stu_name" : "张三",
"course" : "数学",
"score" : 95,
"level" : "A"
} /* 3 */
{
"_id" : ObjectId("5c735e26b21aeac107319875"),
"stu_name" : "张三",
"course" : "语文",
"score" : 91,
"level" : "A"
} /* 4 */
{
"_id" : ObjectId("5c735e26b21aeac107319876"),
"stu_name" : "张三",
"course" : "历史",
"score" : 98,
"level" : "A"
} /* 5 */
{
"_id" : ObjectId("5c735e26b21aeac107319877"),
"stu_name" : "李四",
"course" : "数学",
"score" : 88,
"level" : "B"
} /* 6 */
{
"_id" : ObjectId("5c735e26b21aeac107319878"),
"stu_name" : "李四",
"course" : "英语",
"score" : 93,
"level" : "A"
} /* 7 */
{
"_id" : ObjectId("5c735e26b21aeac107319879"),
"stu_name" : "李四",
"course" : "语文",
"score" : 99,
"level" : "A"
}

要求:统计出每个学生的level为A的成绩的总和,并按学生名字进行分组显示

其执行的逻辑过程如下图所示:

在mongo shell里面执行:

db.student.mapReduce(
function() { emit(this.stu_name,this.score); },
function(key, values) {return Array.sum(values)},
{
query:{level:"A"},
out:"total_score"
}
)
/* 1 */
{
"result" : "total_score",
"timeMillis" : 171.0,
"counts" : {
"input" : 5,
"emit" : 5,
"reduce" : 2,
"output" : 2
},
"ok" : 1.0
}

结果表明,共有 5 个符合查询条件("level":"A")的student, 在map函数中生成了 5 个键值对文档,最后使用reduce函数将相同的键值分为 2 组。

具体参数说明:

  • result:储存结果的collection的名字,这是个临时集合,MapReduce的连接关闭后自动就被删除了。
  • timeMillis:执行花费的时间,毫秒为单位
  • input:满足条件被发送到map函数的文档个数
  • emit:在map函数中emit被调用的次数,也就是所有集合中的数据总量
  • ouput:结果集合中的文档个数(count对调试非常有帮助)
  • ok:是否成功,成功为1
  • err:如果失败,这里可以有失败原因,不过从经验上来看,原因比较模糊,作用不大

查看真正的统计结果:

三、用spring-boot-starter-data-mongodb来实现上面的操作

1、新建maven工程:mongo-mapreduce

引入springboot依赖和mongodb依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>com.mongo.mapreduce</groupId>
<artifactId>mongo-mapreduce</artifactId>
<version>1.0-SNAPSHOT</version>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.4.1.RELEASE</version>
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
<exclusions>
<exclusion>
<artifactId>spring-boot-starter-logging</artifactId>
<groupId>org.springframework.boot</groupId>
</exclusion>
</exclusions>
</dependency> </dependencies>
</project>

2、创建配置文件application.yml,map函数:map.js,reduce函数:reduce.js

server:
port:
context-path: /
spring:
data:
mongodb:
uri: mongodb://admin:admin@172.16.1.11:,172.16.1.11:/testdb?AutoConnectRetry=true

map.js

function() {
emit(this.stu_name,this.score);
}

reduce.js

function(key,values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += values[i];
return sum;
}

3、创建springboot启动主类

package com.mongo.mapreduce;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication; /**
* @author Administrator
* @date 2019/02/25
*/
@SpringBootApplication
public class Application {
public static void main(String[] args){
SpringApplication.run(Application.class, args);
}
}

4、创建接收mapreduce结果的实体类

package com.mongo.mapreduce.model;

/**
* @author Administrator
* @date 2019/02/25
*/
public class MapReduceResult {
private String id;
private Integer value; public String getId() {
return id;
} public void setId(String id) {
this.id = id;
} public Integer getValue() {
return value;
} public void setValue(Integer value) {
this.value = value;
}
}

5、创建controller

package com.mongo.mapreduce.controller;

import com.mongo.mapreduce.model.MapReduceResult;
import com.sun.beans.decoder.ValueObject;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.mapreduce.MapReduceOptions;
import org.springframework.data.mongodb.core.mapreduce.MapReduceResults;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController; import java.util.List; /**
* @author Administrator
* @date 2019/02/25
*/
@RestController
@RequestMapping("/map-reduce")
public class TestController { @Autowired
private MongoTemplate mongoTemplate; @RequestMapping(value = "/result",method = RequestMethod.GET)
public void postTest(){
//删除_id不等于空的数据,等于删除所有数据,目的是清空上一次mapreduce的结果
Criteria criteria=new Criteria("_id");
criteria.ne("");
Query query = new Query(criteria);
mongoTemplate.remove(query,"total_score"); //执行map reduce操作
Criteria criteria1=new Criteria("level");
criteria1.is("A");
Query query1 = new Query(criteria1);
MapReduceOptions options = MapReduceOptions.options();
options.outputCollection("total_score");
options.outputTypeReduce();
MapReduceResults<MapReduceResult> reduceResults =
mongoTemplate.mapReduce(query1,"student",
"classpath:map.js",
"classpath:reduce.js",
options,
MapReduceResult.class);
for(MapReduceResult reduceResult:reduceResults){
System.out.println("map reduce的结果如下:=========");
System.out.println("姓名:"+reduceResult.getId()+",A的总分:"+reduceResult.getValue());
}
}
}

6、用postman调用

mongoDB实现MapReduce的更多相关文章

  1. MongoDB 的 MapReduce 大数据统计统计挖掘

    MongoDB虽然不像我们常用的mysql,sqlserver,oracle等关系型数据库有group by函数那样方便分组,但是MongoDB要实现分组也有3个办法: * Mongodb三种分组方式 ...

  2. MongoDb 用 mapreduce 统计留存率

    MongoDb 用 mapreduce 统计留存率(金庆的专栏)留存的定义采用的是新增账号第X日:某日新增的账号中,在新增日后第X日有登录行为记为留存 输出如下:(类同友盟的留存率显示)留存用户注册时 ...

  3. MongoDB:Map-Reduce

    Map-reduce是一个考虑大型数据得到实用聚集结果的数据处理程式(paradigm).针对map-reduce操作,MongoDB提供来mapreduce命令. 考虑以下的map-reduce操作 ...

  4. MongoDB中mapReduce的使用

    MongoDB中mapReduce的使用 制作人:全心全意 mapReduce的功能和group by的功能类似,但比group by处理的数据量更大 使用示例: var map = function ...

  5. mongodb 聚合(Map-Reduce)

    介绍 Map-reduce 是一种数据处理范式,用于将大量数据压缩为有用的聚合结果.对于 map-reduce 操作,MongoDB 提供MapReduce数据库命令. MongoDB中的MapRed ...

  6. 在MongoDB的MapReduce上踩过的坑

    太久没动这里,目前人生处于一个新的开始.这次博客的内容很久前就想更新上来,但是一直没找到合适的时间点(哈哈,其实就是懒),主要内容集中在使用Mongodb时的一些隐蔽的MapReduce问题: 1.R ...

  7. MongoDB进行MapReduce的数据类型

    有很长一段时间没更新博客了,因为最近都比较忙,今天算是有点空闲吧.本文主要是介绍MapReduce在MongoDB上的使用,它与sql的分组.聚集类似,也是先map分组,再用reduce统计,最后还可 ...

  8. mongoDB(3) mapReduce

    mapReduce是大数据的核心内容,但实际操作中别用这个,所谓的mapReduce分两步 1.map:将数据分别取出,Map函数调用emit(key,value)遍历集合中所有的记录,将key与va ...

  9. MongoDB下Map-Reduce使用简单翻译及示例

    目录 Map-Reduce JavaScript 函数 Map-Reduce 行为 一个简单的测试 原文地址https://docs.mongodb.com/manual/core/map-reduc ...

随机推荐

  1. java内存区域之程序计数器

    程序计数器(program counter register) 作用:字节码解释其工作时,通过这个计数器的值的改变,来选取下一条执行的字节码命令. 由于java虚拟机的都线程是通过线程轮流切换,并分配 ...

  2. Kafka介绍与消息队列

    消息队列的好处: 消息队列(Message Queue) 消息: 网络中的两台计算机或者两个通讯设备之间传递的数据.例如说:文本.音乐.视频等内容. 队列:一种特殊的线性表(数据元素首尾相接),特殊之 ...

  3. 一个简单的通讯服务框架(大家发表意见一起研究)JAVA版本

    最近研究下java语言,根据一般使用的情况,写了个连接通讯服务的框架: 框架结构 C-Manager-S; 把所有通讯内容抽取成三个方法接口:GetData,SetData,带返还的Get; 所有数据 ...

  4. Vue 父组件方法和参数传给子组件的方法

    <template> <div class="content-item"> <!-- openWnd是父组件自身的方法,openDutyWnd是子组件 ...

  5. 协程,greenlet,gevent

    """ 协程 """ ''' 协程: 类似于一个可以暂停的函数,可以多次传入数据,可以多次返回数据 协程是可交互的 耗资源大小:进程 --& ...

  6. How can I manage the modules for python2 when python3 installed as well. In OSX

    ref: https://stackoverflow.com/questions/53385448/how-can-i-manage-the-modules-for-python2-when-pyth ...

  7. spring boot 错误处理总结

    在boot 中, 对404  和 异常 有了额外的处理. 当然,我们可以定制, 如何做呢? 1 写一个继承 ErrorController 的Controller 注意, 这里一定要继承 ErrorC ...

  8. hadoop distcp hdfs://ns1/aaa hdfs://ns8/bbb UnknownHostException: xxx 两个高可用(ha)集群间distcp 如何识别两个集群逻辑名称

    在要执行distcp 的客户端配置添加 dfs.internal.nameservices 指local service 就是client 所在的hadoop 的逻辑名称 <!-- servic ...

  9. Spring -- <tx:annotation-driven>注解基于JDK动态代理和CGLIB动态代理的实现Spring注解管理事务(@Trasactional)的区别。

    借鉴:http://jinnianshilongnian.iteye.com/blog/1508018 基于JDK动态代理和CGLIB动态代理的实现Spring注解管理事务(@Trasactional ...

  10. 与引导文件系统/vmfs/devices..的备用设备之间的连接已丢失,主机配置更改将不会保存到持久存储中

    Cisco UCS 刀片服务器与NETAPP存储 1.异常问题描述: 2.可能原因:存储链路异常     比如断电恢复.光纤线本身的问题.模块的问题.环境温度的问题.bug之类的都有可能 3.处理: ...