洛谷P3987 我永远喜欢珂朵莉~(set 树状数组)
题意
Sol
不会卡常,自愧不如。下面的代码只有66分。我实在懒得手写平衡树了。。
思路比较直观:拿个set维护每个数出现的位置,再写个线段树维护区间和
#include<bits/stdc++.h>
#define LL long long
const int MAXN = 5e5 + 10, INF = 1e9 + 7;
using namespace std;
template<typename A, typename B> inline bool chmax(A &x, B y) {
if(y > x) {x = y; return 1;}
else return 0;
}
template<typename A, typename B> inline bool chmin(A &x, B y) {
if(y < x) {x = y; return 1;}
else return 0;
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, op[MAXN], ql[MAXN], qr[MAXN], val[MAXN];
LL a[MAXN];
bool ha[MAXN];
set<int> s[MAXN];
void gao(int pos, int x) {
for(int i = 1; i * i <= x; i++) {
if(x % i == 0) {
if(ha[i]) s[i].insert(pos);
if(i != (x / i))
if(ha[x / i]) s[x / i].insert(pos);
}
}
}
#define lb(x) (x & (-x))
LL T[MAXN];
void Add(int p, int v) {
while(p <= N) T[p] += v, p += lb(p);
}
LL Sum(int x) {
LL ans = 0;
while(x) ans += T[x], x -= lb(x);
return ans;
}
LL Query(int l, int r) {
return Sum(r) - Sum(l - 1);
}
void Modify(int p, int v) {
Add(p, -a[p]);
Add(p, a[p] / v);
}
void Change(int l, int r, int x) {
auto it = s[x].lower_bound(l);
while(1) {
int pos = *it;
if(it == s[x].end() || pos > r) return ;
if(a[pos] % x != 0) {it++; s[x].erase(prev(it)); continue;}
else Modify(pos, x), a[pos] /= x;
it++;
}
}
int main() {
// freopen("a.in", "r", stdin);
N = read(); M = read();
for(int i = 1; i <= N; i++) a[i] = read(), Add(i, a[i]);
for(int i = 1; i <= M; i++) {
op[i] = read(), ql[i] = read(); qr[i] = read();
if(op[i] == 1) val[i] = read(), ha[val[i]] = 1;
}
for(int i = 1; i <= N; i++) gao(i, a[i]);
for(int i = 1; i <= M; i++) {
if(op[i] == 1) {
if(val[i] != 1) Change(ql[i], qr[i], val[i]);
} else cout << Query(ql[i], qr[i]) << '\n';
}
return 0;
}
洛谷P3987 我永远喜欢珂朵莉~(set 树状数组)的更多相关文章
- [洛谷P3987]我永远喜欢珂朵莉~
[洛谷P3987]我永远喜欢珂朵莉~ 题目大意: 给你\(n(n\le10^5)\)个数\(A_{1\sim n}(A_i\le5\times10^5)\),\(m(m\le5\times10^5)\ ...
- [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)
[NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...
- 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】
题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...
- 洛谷P2414 阿狸的打字机 [NOI2011] AC自动机+树状数组/线段树
正解:AC自动机+树状数组/线段树 解题报告: 传送门! 这道题,首先想到暴力思路还是不难的,首先看到y有那么多个,菜鸡如我还不怎么会可持久化之类的,那就直接排个序什么的然后按顺序做就好,这样听说有7 ...
- 洛谷1527(bzoj2738)矩阵乘法——二维树状数组+整体二分
题目:https://www.luogu.org/problemnew/show/P1527 不难想到(?)可以用二维树状数组.但维护什么?怎么查询是难点. 因为求第k小,可以考虑记权值树状数组,把比 ...
- 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...
- 洛谷 P1972 [SDOI2009]HH的项链-二维偏序+树状数组+读入挂(离线处理,思维,直接1~n一边插入一边查询),hahahahahahaha~
P1972 [SDOI2009]HH的项链 题目背景 无 题目描述 HH 有一串由各种漂亮的贝壳组成的项链.HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含 ...
- 洛谷 P3431:[POI2005]AUT-The Bus(离散化+DP+树状数组)
题目描述 The streets of Byte City form a regular, chessboardlike network - they are either north-south o ...
- [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解
参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...
随机推荐
- 通俗理解N-gram语言模型。(转)
从NLP的最基础开始吧..不过自己看到这里,还没做总结,这里有一篇很不错的解析,可以分享一下. N-gram语言模型 考虑一个语音识别系统,假设用户说了这么一句话:“I have a gun”,因为发 ...
- Vue 父组件ajax异步更新数据,子组件props获取不到
转载 https://blog.csdn.net/d295968572/article/details/80810349 当父组件 axjos 获取数据,子组件使用 props 接收数据时,执行 mo ...
- JavaScript中JSON对象和JSON字符串的相互转化
一.JSON字符串转换为JSON对象 var str = '{"name":"cxh","sex":"man",&quo ...
- 前后端分离开发之前端自己的API(DB)---- (1)
Creating demo APIs for Front-End Developer 心理准备 Tool-1 开发工具/编辑器:Visual Studio Code , 即 VSCode官网: htt ...
- 鱼眼投影方式(Fisheye projection)的软件实现
简单实现 鱼眼模式(Fisheye)和普通的透视投影(Perspective projection),一个很大的区别就是鱼眼的投影算法是非线性的(non-linear),实际照相机的情况是在镜头外面包 ...
- ASP.NET Core 2.2中的Endpoint路由
Endpoint路由 在ASP.NET Core 2.2中,新增了一种路由,叫做Endpoint(终结点)路由.本文将以往的路由系统称为传统路由. 本文通过源码的方式介绍传统路由和Endpoint路由 ...
- 转载 Python 正则表达式入门(初级篇)
Python 正则表达式入门(初级篇) 本文主要为没有使用正则表达式经验的新手入门所写.转载请写明出处 引子 首先说 正则表达式是什么? 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式 ...
- Python系列之环境安装
Python可以实现强大的数据爬虫功能,并且数据分析与挖掘挺方便,也提供了大量的库,比如numpy, pands,matplotlib等.尤其,使用Python做机器学习也成了近年来的趋势,有人经常会 ...
- 学习react
推荐资源: 一位react的最初构建者写的学习react的建议,这是翻译过的http://www.360doc.com/content/16/0129/07/13518188_531384175.sh ...
- 没有安装hiredis
在redis的发行包中的deps目录中就包含hiredis的源码,手动编译安装,或者自行下载一份.地址:hiredis的地址 cd /deps/hiredis make make install 然后 ...