1648: 【例 1】「NOIP2011」计算系数

时间限制: 1000 ms         内存限制: 524288 KB

【题目描述】

给定一个多项式 (ax+by)k ,请求出多项式展开后 xnym 项的系数。

【输入】

输入共一行,包含 55 个整数,分别为 a,b,k,n,m ,每两个整数之间用一个空格隔开。

【输出】

输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10,007 取模后的结果。

【输入样例】

1 1 3 1 2

【输出样例】

3

【提示】

数据范围与提示

对于30% 的数据,有 k≤10;

对于50% 的数据,有 a=1,b=1;

对于100% 的数据,有 0≤n,m≤k,且 n+m=k,0≤a,b≤106

sol:这题应该挺容易的吧,可以用杨辉三角求出当a=1,b=1时xnym的系数,其实就是C(k,n)即C(n+m,n)

如果有a,b的话,很显然就是把C(n+m,n)乘上anbm

/*
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
*/
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int Mod=;
const int N=;
ll Jiec[N];
inline ll Ksm(ll x,ll y)
{
x%=Mod;
ll ans=;
while(y)
{
if(y&) ans=ans*x%Mod;
x=x*x%Mod;
y>>=;
}
return ans;
}
inline ll C(ll n,ll m)
{
return Jiec[n]*Ksm(Jiec[m],Mod-)%Mod*Ksm(Jiec[n-m],Mod-)%Mod;
}
int main()
{
int i,j;
int a,b,k,n,m;
R(a); R(b); R(k); R(n); R(m);
Jiec[]=;
for(i=;i<=k;i++) Jiec[i]=Jiec[i-]*i%Mod;
Wl(Ksm(a,n)*Ksm(b,m)%Mod*C(n+m,n)%Mod);
return ;
}
/*
input
1 1 323 123 200
output
325 input
5 8 7 3 4
output
7470 input
123123 312321 900 400 500
output
817
*/

一本通1648【例 1】「NOIP2011」计算系数的更多相关文章

  1. 题解 【NOIP2011】计算系数

    [NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...

  2. 「NOIP2011」聪明的质监员

    传送门 Luogu 解题思路 第一眼肯定是没什么思路的 dalao勿喷,但我们仔细看一看式子就会发现 \(Y\) 是随着 \(W\) 的变大而变小的. 所以 \(Y\) 随 \(W\) 的变化是单调的 ...

  3. 「NOIP2011」Mayan游戏

    传送门 Luogu 解题思路 爆搜,并考虑几个剪枝. 不交换颜色相同的方块(有争议,但是可以过联赛数据 \(Q \omega Q\)) 左边为空才往左换 右边不为空才往右换 因为对于两个相邻方块,右边 ...

  4. 「NOIP2011」观光公交

    传送门 Luogu 解题思路 有点麻烦,幸好 \(O(n^2)\) 能过... 贪心地想一想,我们如果要用加速器,肯定是要选择车上人数最多的时段加速. 但是我们就会面临这样的情况: 加速了,带来了增益 ...

  5. Loj 3058. 「HNOI2019」白兔之舞

    Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...

  6. LOJ#2452. 「POI2010」反对称 Antisymmetry

    题目描述 对于一个 \(0/1\) 字符串,如果将这个字符串 \(0\) 和 \(1\) 取反后,再将整个串反过来和原串一样,就称作「反对称」字符串.比如 \(00001111\) 和 \(01010 ...

  7. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  8. loj #2116. 「HNOI2015」开店

    #2116. 「HNOI2015」开店 题目描述 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱.这样的想法当然非 ...

  9. loj #2013. 「SCOI2016」幸运数字

    #2013. 「SCOI2016」幸运数字 题目描述 A 国共有 n nn 座城市,这些城市由 n−1 n - 1n−1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以 ...

随机推荐

  1. [POI2007]旅游景点atr BZOJ1097

    分析: 我们可以考虑,因为我们必须经过这些节点,那么我们可以将它状压,并且我们因为可以重复走,只是要求停顿前后,不要求遍历前后,那么我们之间存一下点与点之间的最短路,之后每次转移一下就可以了. f[i ...

  2. (.DS_Store)避免多人提交代码到GitHub上起冲突

    在多人合作的项目里,git pull origin master执行完之后出现以下问题: Auto-merging .DS_Store CONFLICT (content): Merge confli ...

  3. 20155204 王昊《网络对抗技术》EXP4

    20155204 王昊<网络对抗技术>EXP4 一.实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有 ...

  4. 20155318 《网络攻防》Exp6 信息搜集与漏洞扫描

    20155318 <网络攻防>Exp6 信息搜集与漏洞扫描 基础问题 哪些组织负责DNS,IP的管理. 互联网名称与数字地址分配机构,ICANN机构.其下有三个支持机构,其中地址支持组织( ...

  5. VS编程,WPF单独更改TextBlock中部分文字格式的一种方法

    原文:VS编程,WPF单独更改TextBlock中部分文字格式的一种方法 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/articl ...

  6. IIS发布问题

    下午发布一个IIS ,出现一个很奇葩的问题,在本地跑代码运行都正常,但是发布到IIS上后 访问提示: CS0016: 未能写入输出文件“c:\Windows\Microsoft.NET\Framewo ...

  7. 《Flask Web开发实战:入门、进阶与原理解析(李辉著 )》PDF+源代码

    一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲Flask的书了 下载:链接: https://pan.baidu.com/s/1ioEfLc7Hc15jFpC-DmEYBA 提取码: ...

  8. vim打开多窗口、多文件之间的切换

    打开多个文件: 一.vim还没有启动的时候: 1.在终端里输入  vim file1 file2 ... filen便可以打开所有想要打开的文件 2.vim已经启动 输入 :e file 可以再打开一 ...

  9. mfc 进程的诞生和死亡

     进程概念  进程的诞生  进程的死亡 一. 进程: .简单的说 双击一个EXE图标时,系统就会产生一个相应的进程,分配相应的资源,并执行相应的代码. .标准一些的说法: 进程是一个具有独立功能 ...

  10. Macaca之Android原理浅析

    经过研究macaca的android模块源码,原理主要由以下三块构成 一.uiautomator TODO 二.nanohttp TODO 二.adb forward TODO