原题链接

即求二分图的不可行边数量,因为不保证是完备匹配,所以需要通过网络流求出任意一组最大匹配,并建立新图判断。

建新图:对于跑完网络流的图上已经匹配的边,建立反边;对于没有匹配的边,建立正边(图只改变边的方向,别的结构不变)。

有结论:

  1. 必须边的判定条件为:\((x,y)\)的流量为\(1\),并且在残量网络上属于不同的强联通分量。
  2. 可行边的判定条件为:\((x,y)\)的流量为\(1\),或者在残量网络上属于同一个强联通分量。

所以我们在新图上跑\(tarjan\),再逐边检验即可。

#include<cstdio>
#include<cstring>
using namespace std;
const int N = 2e4 + 10;
const int M = 2e5 + 10;
struct dd {
int x, y;
};
dd a[M];
int fi[N], di[M << 1], ne[M << 1], da[M << 1], cfi[N], cdi[M], cne[M], dfn[N], low[N], sta[N], bl[N], cu[N], de[N], q[M << 1], an[M], l = 1, tp, lc, SCC, st, ed, ti;
bool v[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z)
{
di[++l] = y;
da[l] = z;
ne[l] = fi[x];
fi[x] = l;
}
inline void add_c(int x, int y)
{
cdi[++lc] = y;
cne[lc] = cfi[x];
cfi[x] = lc;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
bool bfs()
{
int i, x, y, head = 0, tail = 1;
memset(de, 0, sizeof(de));
q[1] = st;
de[st] = 1;
while (head ^ tail)
{
x = q[++head];
for (i = fi[x]; i; i = ne[i])
if (!de[y = di[i]] && da[i] > 0)
{
de[y] = de[x] + 1;
if (!(y ^ ed))
return true;
q[++tail] = y;
}
}
return false;
}
int dfs(int x, int k)
{
int y, mi;
if (!(x ^ ed))
return k;
for (int &i = cu[x]; i; i = ne[i])
if (!(de[y = di[i]] ^ (de[x] + 1)) && da[i] > 0)
{
mi = dfs(y, minn(k, da[i]));
if (mi > 0)
{
da[i] -= mi;
da[i ^ 1] += mi;
return mi;
}
}
return 0;
}
void tarjan(int x)
{
int i, y;
dfn[x] = low[x] = ++ti;
sta[++tp] = x;
v[x] = 1;
for (i = cfi[x]; i; i = cne[i])
{
if (!dfn[y = cdi[i]])
{
tarjan(y);
low[x] = minn(low[x], low[y]);
}
else
if (v[y])
low[x] = minn(low[x], dfn[y]);
}
if (!(dfn[x] ^ low[x]))
{
SCC++;
do
{
y = sta[tp--];
bl[y] = SCC;
v[y] = 0;
} while (x ^ y);
}
}
int main()
{
int i, n, m, k, x, y, s = 0;
n = re();
m = re();
k = re();
st = n + m + 1;
ed = st + 1;
for (i = 1; i <= k; i++)
{
x = re();
y = re() + n;
a[i].x = x;
a[i].y = y;
add(x, y, 1);
add(y, x, 0);
}
for (i = 1; i <= n; i++)
{
add(st, i, 1);
add(i, st, 0);
}
for (i = 1; i <= m; i++)
{
add(i + n, ed, 1);
add(ed, i + n, 0);
}
while (bfs())
{
for (i = 1; i <= ed; i++)
cu[i] = fi[i];
while (dfs(st, 1e9) > 0);
}
for (i = 2; i <= l; i++)
if (da[i])
add_c(di[i ^ 1], di[i]);
for (i = 1; i <= ed; i++)
if (!dfn[i])
tarjan(i);
for (i = 1; i <= k;i++)
if (bl[a[i].x] ^ bl[a[i].y] && da[i << 1])
an[++s] = i;
printf("%d\n", s);
if (!s)
{
printf("\n");
return 0;
}
for (i = 1; i < s; i++)
printf("%d ", an[i]);
printf("%d", an[s]);
return 0;
}

CH#17C 舞动的夜晚的更多相关文章

  1. [Contest Hunter#17-C] 舞动的夜晚

    [题目链接] http://contest-hunter.org:83/contest/CH%20Round%20%2317/%E8%88%9E%E5%8A%A8%E7%9A%84%E5%A4%9C% ...

  2. ContestHunter#17-C 舞动的夜晚

    Description: L公司和H公司举办了一次联谊晚会.晚会上,L公司的N位员工和H公司的M位员工打算进行一场交际舞.在这些领导中,一些L公司的员工和H公司的员工之间是互相认识的,这样的认识关系一 ...

  3. CH Round #17 舞动的夜晚

    舞动的夜晚 CH Round #17 描述 L公司和H公司举办了一次联谊晚会.晚会上,L公司的N位员工和H公司的M位员工打算进行一场交际舞.在这些领导中,一些L公司的员工和H公司的员工之间是互相认识的 ...

  4. AcWing 380. 舞动的夜晚

    大型补档计划 题目链接 这题是求必须边,而不是不可行边,因为不可行边 = 必须边 + 死掉了的边(貌似lyd第三版书上还是说的不可行边)先跑最大流. 在跑完以后的残余网络上,对于一条当前匹配的边 \( ...

  5. 0x6A 网络流初步

    CH Round #17-C 这个算是一个技能点吧,不点不会,点了就没什么了.懒得写看书吧书上的1应该是0... 我又回来了太懒了不想翻书还是写写吧 必须边的判定条件:该边流量为0且两端的点在残余网络 ...

  6. Noip模拟58 2021.9.21(中秋祭&&换机房祭)

    第一次在学校过中秋节,给家里人视频电话,感觉快回家了很开心, 然后还吃了汉堡喝饮料非常爽,颓废了一会儿还换了新机房,$Linux2.0$非常dei,少爷机也非常快, 发现好像测评机又成了老爷机,这就是 ...

  7. 2021.9.21考试总结[NOIP模拟58]

    T1 lesson5! 开始以为是个无向图,直接不懂,跳去T2了. 之后有看了一眼发现可暴力,于是有了\(80pts\). 发现这个图是有拓扑序的,于是可以用拓扑排序找最长路径.先找原图内在最长路径上 ...

  8. 总结-一本通提高篇&算竞进阶记录

    当一个人看见星空,就再无法忍受黑暗 为了点亮渐渐沉寂的星空 不想就这样退役 一定不会鸽の坑 . 一本通提高篇 . 算竞进阶 . CDQ & 整体二分 . 平衡树 . LCT . 字符串 . 随 ...

  9. [考试反思]1019csp-s模拟测试80(a):天遣

    A组题,所以把榜粘全了. 第6名,被卡在刚好正中间. 我最近干什么伤天害理的事了?(例如说没有在skyh去上厕所的时候捶他) 上来看T1,非常贴心出题人直接把递推式子给你了,然后就和斐波数的递推一样了 ...

随机推荐

  1. Pandas数据排序

    Pandas数据排序 .sort_index() 在指定轴上根据索引进行排序,索引排序后内容会跟随排序 b = pd.DataFrame(np.arange(20).reshape(4,5),inde ...

  2. hibernate ID

            一:主键生成策略大体分类: 1:hibernate 负责对主键ID赋值  2:应用程序自己为主键ID赋值(不推荐使用) 3:底层数据库为主键ID赋值         二:具体用法    ...

  3. java 集合 Se HashTreeSet

    Set接口  Set是Collection的子接口,与List相对 Set集合中的元素的特点是1,无序性 2,无下标3,无重复的元素 Set是个接口,所以无法直接创建对象,要依赖它的实现类来创建对象  ...

  4. Win10 Fn键切换

    [Win10 Fn键切换] 选择 FN+ESC 参考:https://zhidao.baidu.com/question/626159613433698444.html

  5. char、varchar、nchar、nvarchar的区别(转)

    转自:http://tech.diannaodian.com/dw/data/sql/2011/1005/135556.html 对于程序中的string型字段,SQLServer中有char.var ...

  6. centos7 脚本搭建SVN

    #!/usr/bin/env bash #安装软件 HTTP 和 SVN软件 yum install -y httpd subversion mod_dav_svn #创建库文件夹并更改文件夹权限 m ...

  7. LibreOJ 6282. 数列分块入门 6

    题目链接:https://loj.ac/problem/6282 参考博客:http://www.cnblogs.com/stxy-ferryman/p/8560551.html 这里如果用数组的话元 ...

  8. HDU-1069.MonkeyandBanana(LIS)

    本题大意:给出n个长方体,每种长方体不限量,让你求出如何摆放长方体使得最后得到的总高最大,摆设要求为,底层的长严格大于下层的长,底层的宽严格大于下层的宽. 本题思路:一开始没有啥思路...首先应该想到 ...

  9. TOJ 2130: Permutation Recovery(思维+vector的使用)

    传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=2130 时间限制(普通/Java): ...

  10. Matches Game

    Matches Game http://poj.org/problem?id=2234 Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...