μhttp://www.lydsy.com/JudgeOnline/problem.php?id=3529 (题目链接)

题意

  多组询问,每次给出${n,m,a}$。求$${\sum_{i=1}^n\sum_{j=1}^m[\sum_{d|i,d|j}d<=a]\sum_{d|i,d|j}d}$$

Solution

  PoPoQQQ的看不懂,我还是比较适合套路→_→:http://blog.csdn.net/FZHvampire/article/details/50964639

  有${a}$的限制很不好做,我们不妨先来看看如果没有${a}$的限制,是个什么情况。

\begin{aligned}  & \sum_{i=1}^n\sum_{j=1}^m\sum_{d|i,d|j}d  \\  =&\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^{min(n,m)}f(d)[gcd(i,j)=d]   \end{aligned}

  这里${f(d)}$表示${d}$的约数和,由约数和定理:$${d=p_1^{a_1}p_2^{a_2}p_3^{a_3}······p_k^{a_k}}$$

$${f(d)=(p_1^0+p_1^1+······+p_1^{a_1})(p_2^0+p_2^1+······+p_2^{a_2})······(p_k^0+p_k^1+······+p_k^{a_k})}$$

  我们发现当${p,q}$互质时,${f(pq)=f(p)f(q)}$,${f}$是个积性函数。也就是说${f}$可以线性筛求解,具体求法可以看代码。回到上面的问题,我们继续变化这个式子。

\begin{aligned}  &\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^{min(n,m)}f(d)[gcd(i,j)=d]  \\  =&\sum_{d=1}^{min(n,m)}f(d)\sum_{i=1}^{\lfloor{n/d}\rfloor}\sum_{j=1}^{\lfloor{m/d}\rfloor}[gcd(i,j)=1]  \\  =&\sum_{d=1}^{min(n,m)}f(d)\sum_{t=1}^{min(\lfloor{n/d}\rfloor,\lfloor{m/d}\rfloor)}μ(t)\lfloor\frac{n}{dt}\rfloor\lfloor\frac{m}{dt}\rfloor   \end{aligned}

  我们令${Q=dt}$,先枚举${Q}$,得到:$${\sum_{Q=1}^{min(n,m)}\lfloor\frac{n}{Q}\rfloor\lfloor\frac{m}{Q}\rfloor\sum_{d|Q}f(d)μ(\frac{Q}{d})}$$

  我们对${f}$和${μ}$函数的狄利克雷卷积${g(Q)=\sum_{d|Q}f(d)μ(\frac{Q}{d})}$预处理前缀和,前面的${\lfloor\frac{n}{Q}\rfloor\lfloor\frac{m}{Q}\rfloor}$分块,那么这个式子的计算就达到了${\sqrt{n}}$。

  考虑如何加入限制${a}$。

  我们可以离线,将询问按照${a}$从小到大排序,${f}$函数按照从小到大排序。询问的时候,我们就动态维护一个树状数组${c}$。树状数组的每一位${c[x]}$存的是卷积${g(x)}$中${f(d)}$不超过${a}$的数之和。数据组数为${T}$,询问复杂度${O(T\sqrt{n}logn)}$

细节

  这题复杂度有点卡,对于取模运算我们可以对${int}$自然溢,最后再${\&2147483647}$就可以了。

代码

// bzoj3994
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf 2147483647
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=100010;
int mu[maxn],e[maxn],ans[maxn],c[maxn],vis[maxn],p[maxn],t[maxn],g[maxn]; struct F {int d,num;}f[maxn];
struct Q {int n,m,a,id;}q[maxn]; bool cmpT(Q a,Q b) {return a.a<b.a;}
bool cmpt(F a,F b) {return a.d<b.d;}
int lowbit(int x) {return x&-x;}
int power(int a,int b) {
int res=1;
while (b) {
if (b&1) res*=a;
a*=a,b>>=1;
}
return res;
}
void add(int x,int val) {
for (int i=x;i<maxn;i+=lowbit(i)) c[i]+=val;
}
int query(int x) {
int s=0;
for (int i=x;i>=1;i-=lowbit(i)) s+=c[i];
return s;
}
int main() {
mu[1]=1;f[1].d=f[1].num=1;
for (int i=2;i<maxn;i++) {
f[i].num=i;
if (!vis[i]) mu[i]=-1,f[i].d=t[i]=1+i,g[i]=1,p[++p[0]]=i;
for (int j=1;j<=p[0] && i*p[j]<maxn;j++) {
vis[i*p[j]]=1;
if (i%p[j]==0) {
mu[i*p[j]]=0;
g[i*p[j]]=g[i]+1;
t[i*p[j]]=t[i]+power(p[j],g[i]+1);
f[i*p[j]].d=f[i].d/t[i]*t[i*p[j]];
break;
}
else {
mu[i*p[j]]=-mu[i];
f[i*p[j]].d=f[i].d*f[p[j]].d;
g[i*p[j]]=1;t[i*p[j]]=p[j]+1;
}
}
}
int T;scanf("%d",&T);
for (int i=1;i<=T;i++) scanf("%d%d%d",&q[i].n,&q[i].m,&q[i].a),q[i].id=i;
sort(q+1,q+1+T,cmpT);
sort(f+1,f+maxn,cmpt);
for (int now=0,i=1;i<=T;i++) {
while (now+1<maxn && f[now+1].d<=q[i].a) { //now忘记+1还过了数据,这是有多水→_→
now++;
for (int j=1;j*f[now].num<maxn;j++)
add(j*f[now].num,mu[j]*f[now].d);
}
int n=q[i].n,m=q[i].m;
if (n>m) swap(n,m);
for (int j=1,k;j<=n;j=k+1) {
k=min(n/(n/j),m/(m/j));
ans[q[i].id]+=(n/j)*(m/j)*(query(k)-query(j-1));
}
ans[q[i].id]&=inf;
}
for (int i=1;i<=T;i++) printf("%d\n",ans[i]);
return 0;
}

【bzoj3529】 Sdoi2014—数表的更多相关文章

  1. [bzoj3529][Sdoi2014]数表_树状数组_莫比乌斯反演

    数表 bzoj-3529 Sdoi-2014 题目大意:n*m的数表,第i行第j列的数是同时整除i和j的所有自然数之和.给定a,求数表中所有不超过a的和. 注释:$1\le n,m \le 10^5$ ...

  2. BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】

    3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...

  3. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  4. BZOJ3529 [Sdoi2014]数表【莫比乌斯反演】

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  5. 莫比乌斯反演套路二--(n/d)(m/d)给提出来--BZOJ3529: [Sdoi2014]数表

    一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a ...

  6. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  7. BZOJ3529: [Sdoi2014]数表

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3529 挺恶心的数论TAT... 设f[i]是i的约数和,这个可以nln(n)扫出来. ans= ...

  8. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  9. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  10. 题解【bzoj3529 [SDOI2014]数表】

    Description \(T\) 组询问,定义 \(F(n)=\sum\limits_{d|n}d\).每次给出 \(n,m,a\) 求 \[\sum\limits_{i=1,j=1,F(\gcd( ...

随机推荐

  1. Python3入门(六)——函数式编程

    一.高阶函数 1.可以通过变量指向函数,达到类似别名的效果: >>> f = abs >>> f(-10) 10 2.函数的参数可以是函数,也就是函数可以作为一个入 ...

  2. 20155223 Exp8 WEB基础实践

    20155223 Exp8 WEB基础实践 基础问题回答 什么是表单? 表单是一个包含表单元素的区域. 表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等)输入信息的元素. 表单使 ...

  3. pandas 索引与列相互转化

    1. 准备数据 import pandas as pd from io import StringIO csv_txt = '''"date","player1" ...

  4. Hadoop日记Day16---命令行运行MapReduce程序

    一.代码编写 1.1 单词统计 回顾我们以前单词统计的例子,如代码1.1所示. package counter; import java.net.URI; import org.apache.hado ...

  5. 记录一次 @Autowired 无法注入( spring依赖正常 idea显示有spring已注入的图标)导致空指针异常的原因

    首先,参考 https://blog.csdn.net/weixin_40475523/article/details/81085990 然后发现 是因为我把自己的这个类加上了 @Service 注解 ...

  6. Mvc4_语法基础介绍

    @model MvcApplicationTest.Models.User @{ ViewBag.Title = "Index"; } <script type=" ...

  7. BUGKU--刷题

    刷题 一.BUGKU WEB 1. 变量1 知识点php两个$$是 可变变量,就是一个变量的变量名可以动态的设置和使用 $GLOBALS一个包含了全部变量的全局组合数组.变量的名字就是数组的键 < ...

  8. VLAN入门知识

    版权声明: https://blog.csdn.net/xinyuan510214/article/details/52020987 本文乃fireaxe原创,使用GPL发布,可以自由拷贝,转载.但转 ...

  9. PAT甲题题解-1053. Path of Equal Weight (30)-dfs

    由于最后输出的路径排序是降序输出,相当于dfs的时候应该先遍历w最大的子节点. 链式前向星的遍历是从最后add的子节点开始,最后添加的应该是w最大的子节点, 因此建树的时候先对child按w从小到大排 ...

  10. mysql 访问不是本地数据库,给用户刷新了权限没有作用

    1.grant all privileges on *.* to 'yangxin'@'%' identified by 'yangxin123456' with grant option; flus ...