每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望。

天数期望:

A.投出了k-1个硬币正面朝上花费了E(k-1)天,再投出一个硬币正面朝上(概率为p,花费时间+1天);B.投出了k个硬币正面朝上花费了E(k)天,投出一个硬币反面朝上(概率为1-p,花费时间+1天)。分析的时候不能漏掉B情况,得到关系式:E(k)=p*(E(k-1)+1)+(1-p)*(E(k)+1),整理可得E(k)=E(k-1)+1/p,迭代或者数学归纳可知最终的E(k)=k/p。
P.S:换个角度理解,投硬币其实是一个完全独立的事件,正面朝上的概率是p,整体看来要出现k次正面朝上需要投硬币k/p次,每次投币花费一天,因此投出k个硬币正面朝上需要k/p天。

花费期望:

设投出k个硬币正面朝上花费期望为C(k),
整理关系式:C(k)=p* C(k-1) +(1-p)*C(k) + 2*E(k)-1
#include<bits/stdc++.h>
using namespace std; int main()
{
double n,p;
while(scanf("%lf",&n),n)
{
scanf("%lf",&p);
printf("%.3lf %.3lf\n",n/p,((n*n+n)/p-n)/p);
}
return ;
}

King Arthur's Birthday Celebration的更多相关文章

  1. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  2. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  3. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  4. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  5. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  6. poj 3682 King Arthur's Birthday Celebration (期望dp)

    传送门 解题思路 第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以 ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 4337 King Arthur's Knights (Hamilton)

    King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. 【BZOJ1967】[AHOI2005]穿越磁场(最短路)

    [BZOJ1967][AHOI2005]穿越磁场(最短路) 题面 BZOJ 洛谷 题解 一个显然的思路是这样的,我们的正方形的边长把整个平面割成了若干块,显然每个联通块都可以看着做一个点,那么接下来只 ...

  2. 【洛谷P3916】图的遍历

    题目大意:给定一个 N 个点,M 条边的有向图,求每个点能够到达的节点的最大编号是多少. 题解:因为题中所给图不一定是一个 DAG,因此无法进行按照拓扑序来动态规划,需要另辟蹊径.由于求的是每个节点能 ...

  3. (转)Maven学习总结(八)——使用Maven构建多模块项目

    孤傲苍狼只为成功找方法,不为失败找借口! Maven学习总结(八)——使用Maven构建多模块项目 在平时的Javaweb项目开发中为了便于后期的维护,我们一般会进行分层开发,最常见的就是分为doma ...

  4. Linux上vi编辑文件非正常退出后文件恢复

    Vim另存文件的命令为 编辑完文件后Esc,输入以下指令 :w filename 编辑文件时非正常退出,会生成.hello.txt.swp的文件,还有一些其他信息 恢复文件要使用以下命令: [keys ...

  5. python BitTornado P2P分发大文件

    P2P分发大文件思路 1.将软件包生成种子文件 2.通过saltstack将种子文件分发至每台服务器 3.每台服务器进行种子下载 推荐使用Twitter开源的murder.Twitter用它来分发大文 ...

  6. ThreadLocal实现线程范围的共享变量

    一.如何理解线程范围内共享数据 1.static int num=0; 2.线程1访问num变量,并设置为num=2:线程2访问num变量,并设置为num=3: 3.当线程1中对象A.B.C 在访问线 ...

  7. nodemon:让node自动重启

    nodemon:服务器自动重启工具 当我们修改代码时,node必须要手动重启,但可以按照nodemon. npm install -g nodemon 安装完 nodemon 后,就可以用 nodem ...

  8. 如何设置Ultraedit自动换行

    有时候这会非常麻烦, 要让Ultraedit自动换行请按发下方法: 1. 点击菜单栏的"高级→配置",找到"编辑器→自动换行/制表符设置". 2. 然后,把&q ...

  9. jQuery1.11源码分析(3)-----Sizzle源码中的浏览器兼容性检测和处理[原创]

    上一章讲了正则表达式,这一章继续我们的前菜,浏览器兼容性处理. 先介绍一个简单的沙盒测试函数. /** * Support testing using an element * @param {Fun ...

  10. html5 canvas结构基础

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...