每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望。

天数期望:

A.投出了k-1个硬币正面朝上花费了E(k-1)天,再投出一个硬币正面朝上(概率为p,花费时间+1天);B.投出了k个硬币正面朝上花费了E(k)天,投出一个硬币反面朝上(概率为1-p,花费时间+1天)。分析的时候不能漏掉B情况,得到关系式:E(k)=p*(E(k-1)+1)+(1-p)*(E(k)+1),整理可得E(k)=E(k-1)+1/p,迭代或者数学归纳可知最终的E(k)=k/p。
P.S:换个角度理解,投硬币其实是一个完全独立的事件,正面朝上的概率是p,整体看来要出现k次正面朝上需要投硬币k/p次,每次投币花费一天,因此投出k个硬币正面朝上需要k/p天。

花费期望:

设投出k个硬币正面朝上花费期望为C(k),
整理关系式:C(k)=p* C(k-1) +(1-p)*C(k) + 2*E(k)-1
#include<bits/stdc++.h>
using namespace std; int main()
{
double n,p;
while(scanf("%lf",&n),n)
{
scanf("%lf",&p);
printf("%.3lf %.3lf\n",n/p,((n*n+n)/p-n)/p);
}
return ;
}

King Arthur's Birthday Celebration的更多相关文章

  1. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  2. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  3. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  4. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  5. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  6. poj 3682 King Arthur's Birthday Celebration (期望dp)

    传送门 解题思路 第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以 ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 4337 King Arthur's Knights (Hamilton)

    King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. 【BZOJ1965】[AHOI2005]洗牌(数论)

    [BZOJ1965][AHOI2005]洗牌(数论) 题面 BZOJ 洛谷 题解 考虑反过来做这个洗牌的操作,假定当前牌是第\(l\)张. 因为之前洗的时候考虑了前一半和后一半,所以根据\(l\)的奇 ...

  2. Python 使用multiprocessingm模块创建多进程

    from multiprocessing import Process def run_proc(name): print("子进程Process %s(%s)运行..."%(na ...

  3. POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环)

    POJ 2240 Arbitrage / ZOJ 1092 Arbitrage / HDU 1217 Arbitrage / SPOJ Arbitrage(图论,环) Description Arbi ...

  4. Jenkins + Pipeline 构建流水线发布

      Jenkins + Pipeline 构建流水线发布 利用Jenkins的Pipeline配置发布流水线 参考: https://jenkins.io/doc/pipeline/tour/depl ...

  5. django 学习笔记(转)

    原文链接:https://my.oschina.net/linktime/blog/105280 例如有一下模型 from django.db import models class person(m ...

  6. bzoj千题计划201:bzoj1820: [JSOI2010]Express Service 快递服务

    http://www.lydsy.com/JudgeOnline/problem.php?id=1820 很容易想到dp[i][a][b][c] 到第i个收件地点,三个司机分别在a,b,c 收件地点的 ...

  7. spark RDD 常见操作

    fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...

  8. SQL Server 基础之《学生表-教师表-课程表-选课表》(二)

    表结构 --学生表tblStudent(编号StuId.姓名StuName.年龄StuAge.性别StuSex) --课程表tblCourse(课程编号CourseId.课程名称CourseName. ...

  9. 整理一下原生js的dom操作

    获取元素 getElementById() getElementsByClass() getElementsByTagName getElementsByName node属性 前.后.父.子 pre ...

  10. [译]使用chage来管理Linux密码过期时间的七个例子

    本文译自 7 Examples to Manage Linux Password Expiration and Aging Using chage 本文主要介绍命令chage的使用,译文会对原文内容会 ...