列出DP方程式:设f[i]表示分组完前i件物品的最小花费,为方便计算,
设sum[i]表示是前i件物品的长度和。
f[i]=min(f[j]+(sum[i]-sum[j]+i-j-L-1)^2) [0<=j<i]
求复杂度O(n)的解法

斜率优化入门题
对于这类方程f(i)=a(i)*b(j)+a(i)+b(j)
工具:构造直线,单调队列
令a(i)=sum(i)+i, b(j)=sum(j)+j+L+1
f(i)=f(j)+(a(i)-b(j))^2
=f(j)+a(i)^2-2*a(i)*b(j)+b(j)^2
2*a(i)*b(j)+f(i)-a(i)^2=f(j)+b(j)^2
//以j为变量,i为常量来看
坐标角度来讲,f(i)含义为:斜率为k=2*a(i)的直线过点P(b(j),f(j)+b(j)^2)与y轴的截距加上a(i)^2
即求这个截距的最小值
结合图像

存在单调队列的最优的 P 点(图中用直线连接)组成了一个下凸包
几点说明:
1.随着i增加,目标斜率k=2*a(i)也在增加(sum(i)是前缀和)
2.目标坐标点为直线与凸包刚好相切的点,即slope(Pj,Pj+1)下面的斜率都小于k,上面斜率都大于k
单调队列:
对队首:while(slope(Phead,Phead+1)<2*a(i))head++; //把前面不要的都剪掉
筛选出来的q(head)即为最优解
f(i)=f(q(head))+(a(i)-b(q(head))^2
对队尾:while(slope(Ptail-1,Ptail)<slope(Ptail-1,Pi))tail--;q(++tail)=i;//如果新加入的Pi与Ptail-1的斜率更小,那么就替换掉Ptail

上代码:
inline db a(int i){return sum(i)+i;}
inline db b(int i){return a(i)+L+1;}
inline db X(int i){return b(i);}
inline db Y(int i){return f(i)+b(i)*b(i);}
inline db slope(int i,j){return (Y(i)-Y(j))/(X(i)-X(j));}

head=tail=1;
For(i,1,n){
while(head<tail&&slope(q(head),q(head+1))<2*a(i))head++;
f(i)=f(q(head))+(a(i)-b(q(head))*(a(i)-b(q(head));
whiel(slope(q(tail-1),q(tail))>slope(q(tail-1),i))tail--;
q(++tail)=i;
}
cout<<f(n);

P3195 [HNOI2008]玩具装箱TOY的更多相关文章

  1. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  2. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  3. P3195 [HNOI2008]玩具装箱TOY 斜率优化dp

    传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...

  4. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  5. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  6. [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...

  7. 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...

  8. 洛谷 P3195 [HNOI2008]玩具装箱TOY

    题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

随机推荐

  1. hightcharts 如何修改legend图例的样式

    正常情况下hightcharts 的legend图形是根据他本身默认的样式来显示,如下图 这几个图形的形状一般也是改不了的,只能根据图表的类型显示默认的.但是我们可以通过修改默认的样式来展示一些可以实 ...

  2. js-ES6学习笔记-Class(6)

    1.类相当于实例的原型,所有在类中定义的方法,都会被实例继承.如果在一个方法前,加上static关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”. 2.父类的静态方法,可 ...

  3. 安装 Java 开发工具包JDK(Windows版本)

    前言: 进行java开发,首先要安装jdk,安装完成之后,还需要进行环境变量配置,以下就介绍一下具体步骤 具体步骤: 1.进入官网(https://www.oracle.com/technetwork ...

  4. 测试sql server服务是否配置正确

    最简单的方法: 新建一个testdb.udl文件,双击可出现测试界面

  5. VMware 15 安装 MAC OS 10.13 原版(详细图文教程)

    VMware 15 安装 MAC OS 10.13 原版(详细图文教程) 生命在于折腾,之前本想装个双系统黑苹果,什么 U 盘启动盘,四叶草引导,都配置好了,最后跪在一个动态卷上,备份格盘现在弄不了, ...

  6. Java程序流程控制:判断结构、选择结构、循环结构

    本文内容: 判断结构 if 选择结构 switch 循环结构 while do-while for for each break.continue return 首发时间:2017-06-22 21: ...

  7. sysbench安装、使用、结果解读

    sysbench是一个模块化的.跨平台.多线程基准测试工具,主要用于评估测试各种不同系统参数下的数据库负载情况.目前sysbench代码托管在github上,项目地址:https://github.c ...

  8. Use Jupyter notebook on Fedora 28

    生产环境使用 Fedora 28, 并且需要搭建一个 Jupyter 的notebook 方便使用,所搭建的Jupyter 支持单人远程 密码访问 1. 安装 安装 Jupyter , 出错 [roo ...

  9. 【存在问题,待修改】SSH 远程登陆

    0. 前提 设置 hosts 参考链接 Linux 配置 hosts SSH公钥登录原理 1. SSH 是什么 SSH ( Secure Shell ) 是一种协议标准,其目的是实现安全远程登录以及其 ...

  10. SDN 第五次上机作业

    1.搭建如下拓扑并连接控制器 2.下发相关流表和组表实现负载均衡 s1: s2: s3: s4: 3.抓包分析验证负载均衡 s4-eth1: s4-eth2: s4-eth3