题面

$ solution: $

这一题其实就是一个非常明显的三维背包问题(但博主太弱了就10分QAQ)

$ F[i][j][k]: $ 表示走到 $ (i,j) $ 这个位置并且背包容量为 $ k $ 时的最大价值。因为转移时只能向下或向右转移,所以我们可以按行 $ DP $ (从上到下,从左到右遍历),进行滚动数组,从而把第一位省去。

$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,m,t,ans;
int a[405][405];
int b[405][405];
int f[405][405]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen("matrix.in","r",stdin);
//freopen("matrix.out","w",stdout);
n=qr(),m=qr(),t=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
a[i][j]=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
b[i][j]=qr();
for(rg i=1;i<=n;++i){
for(rg j=1;j<=m;++j){
for(rg k=0;k<=t;++k){
f[j][k]=max(f[j][k],f[j-1][k]);
if(k+a[i][j]>t)continue;
f[j][k]=max(f[j][k],f[j][k+a[i][j]]+b[i][j]);
f[j][k]=max(f[j][k],f[j-1][k+a[i][j]]+b[i][j]);
}
}
}
for(rg j=1;j<=m;++j)
for(rg i=0;i<=t;++i)
ans=max(ans,f[j][i]);
printf("%d\n",ans);
return 0;
}

matrix 矩阵(多维DP)的更多相关文章

  1. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  2. 【CSS3】 理解CSS3 transform中的Matrix(矩阵)

    理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...

  3. 理解CSS3 transform中的Matrix(矩阵)

    一.哥,我被你吓住了 打架的时候会被块头大的吓住,学习的时候会被奇怪名字吓住(如“拉普拉斯不等式”).这与情感化设计本质一致:界面设计好会让人觉得这个软件好用! 所以,当看到上面“Matrix(矩阵) ...

  4. 最大矩阵(简单DP)

    见题: 很水的一题,数据范围太小,前缀和加爆搜就行. #include<bits/stdc++.h> using namespace std; ; ,m,n,sum[maxn][maxn] ...

  5. 理解CSS3 transform中的Matrix(矩阵)——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...

  6. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  7. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  8. Leetcode 566. Reshape the Matrix 矩阵变形(数组,模拟,矩阵操作)

    Leetcode 566. Reshape the Matrix 矩阵变形(数组,模拟,矩阵操作) 题目描述 在MATLAB中,reshape是一个非常有用的函数,它可以将矩阵变为另一种形状且保持数据 ...

  9. 前端matrix矩阵的变化

    css3 transform中的matrix矩阵   CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform), ...

  10. css3 transform中的matrix矩阵

    CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3, 如上面矩阵示 ...

随机推荐

  1. JavaScript高级程序设计学习笔记2

    垃圾收集原理: 找出不再使用的变量,然后释放其内存. js中最常用的垃圾收集方法是标记清除,当变量进入环境时,就将变量标记为“进入环境”,当变量离开环境时,将其标记为“离开环境”,最后由垃圾收集器完成 ...

  2. 《Linux内核分析》 之 计算机是如何工作的

    [李行之原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] <Linux内 ...

  3. Linux内核设计与实现 第五章

    1. 什么是系统调用 系统调用就是用户程序和硬件设备之间的桥梁. 用户程序在需要的时候,通过系统调用来使用硬件设备. 系统调用的存在意义: 1)用户程序通过系统调用来使用硬件,而不用关心具体的硬件设备 ...

  4. git的使用与学习

    1.将本地项目推送到Github $ git remote add origin 仓库地址 // 关联远程仓库 $ git push origin master // 推送到远程仓库 如果远程仓库有本 ...

  5. Teechart使用记录

    一.      Chart 1.1 Series 在该界面可以进行曲线的添加.删除.修改 1.2 General 在该界面 Margins 可以设置整个坐标系外边距. 在这里可是设置放大功能. All ...

  6. Winform设置托盘程序,托盘显示

    1.拖一个NotifyIcon,一个ContextMenuStrip控件到主窗体中 2.设置notifyIcon1,一个contextMenuStrip1(如下图) Icon为托盘图标,Text托盘显 ...

  7. php实现文件上传,下载的常见文件配置

    配置文件,php.ini uploadfile  post_max_size 规定表单上传的最大文件:

  8. SQLSERVER 设置自动备份数据库

    1. SQLSERVER 简单的设置 计划任务 进行 备份数据库的操作. 首先需要打开 一些设置 执行 命令如下: sp_configure ; GO RECONFIGURE; GO sp_confi ...

  9. Java超类-java.lang.object

    Java是面向对象的,Object是所有对象的超类(不是继承,也不是实现接口) Object类是所有Java类的祖先.每个类都使用 Object 作为超类.所有对象(包括数组)都实现这个类的方法. 如 ...

  10. ES6学习笔记(四):异步操作

    Promise Promise三种状态 pending.resolved.rejected 使用语法 var promis = new Promise(function(resolve,reject) ...