题面

$ solution: $

这一题其实就是一个非常明显的三维背包问题(但博主太弱了就10分QAQ)

$ F[i][j][k]: $ 表示走到 $ (i,j) $ 这个位置并且背包容量为 $ k $ 时的最大价值。因为转移时只能向下或向右转移,所以我们可以按行 $ DP $ (从上到下,从左到右遍历),进行滚动数组,从而把第一位省去。

$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int n,m,t,ans;
int a[405][405];
int b[405][405];
int f[405][405]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
//freopen("matrix.in","r",stdin);
//freopen("matrix.out","w",stdout);
n=qr(),m=qr(),t=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
a[i][j]=qr();
for(rg i=1;i<=n;++i)
for(rg j=1;j<=m;++j)
b[i][j]=qr();
for(rg i=1;i<=n;++i){
for(rg j=1;j<=m;++j){
for(rg k=0;k<=t;++k){
f[j][k]=max(f[j][k],f[j-1][k]);
if(k+a[i][j]>t)continue;
f[j][k]=max(f[j][k],f[j][k+a[i][j]]+b[i][j]);
f[j][k]=max(f[j][k],f[j-1][k+a[i][j]]+b[i][j]);
}
}
}
for(rg j=1;j<=m;++j)
for(rg i=0;i<=t;++i)
ans=max(ans,f[j][i]);
printf("%d\n",ans);
return 0;
}

matrix 矩阵(多维DP)的更多相关文章

  1. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  2. 【CSS3】 理解CSS3 transform中的Matrix(矩阵)

    理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...

  3. 理解CSS3 transform中的Matrix(矩阵)

    一.哥,我被你吓住了 打架的时候会被块头大的吓住,学习的时候会被奇怪名字吓住(如“拉普拉斯不等式”).这与情感化设计本质一致:界面设计好会让人觉得这个软件好用! 所以,当看到上面“Matrix(矩阵) ...

  4. 最大矩阵(简单DP)

    见题: 很水的一题,数据范围太小,前缀和加爆搜就行. #include<bits/stdc++.h> using namespace std; ; ,m,n,sum[maxn][maxn] ...

  5. 理解CSS3 transform中的Matrix(矩阵)——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...

  6. codeforces 691E 矩阵快速幂+dp

    传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...

  7. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  8. Leetcode 566. Reshape the Matrix 矩阵变形(数组,模拟,矩阵操作)

    Leetcode 566. Reshape the Matrix 矩阵变形(数组,模拟,矩阵操作) 题目描述 在MATLAB中,reshape是一个非常有用的函数,它可以将矩阵变为另一种形状且保持数据 ...

  9. 前端matrix矩阵的变化

    css3 transform中的matrix矩阵   CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform), ...

  10. css3 transform中的matrix矩阵

    CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3, 如上面矩阵示 ...

随机推荐

  1. 初次接触OSSEC

    OSSEC是一款开源的系统监控平台.它集成了HIDS(主机入侵检测).日志监控.安全事件管理(SIM).安全信息和事件管理(SIEM)于一身,结构简单.功能强大的开源解决方案. 主要优点 满足合规性 ...

  2. C++ new和delete 堆和栈

    一.new和delete基本用法 程序开发中内存的动态分配与管理永远是一个让C++开发者头痛的问题,在C中,一般是通过malloc和free来进行内存分配和回收的,在C++中,new和delete已经 ...

  3. Daily Scrum NO.1

    工作概况 符美潇(PM): 今日工作 1.根据开发进程分配第一步开发工作,对相应的成员提出今日的开发要求:要求成员自己所负责的线程池,动态爬取,去重,文件分类等部分进行资料的相关了解. 2.Daily ...

  4. LINUX内核分析第六周学习总结——进程的描述和进程的创建

    LINUX内核分析第六周学习总结——进程的描述和进程的创建 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/cours ...

  5. oracle (+) 什么意思

    oracle中的(+)是一种特殊的用法,(+)表示外连接,并且总是放在非主表的一方. 例如左外连接:select A.a,B.a from A LEFT JOIN B ON A.b=B.b;等价于se ...

  6. 关于cocos2dx 关键字的问题

    今天码代码,在创建新场景的时候,.h文件里  class Game : public cocos2d::Layer没有问题,在Game类里面,声明了它的成员之后,开始在.cpp文件里面实现这个类,到重 ...

  7. PowerDesigner16工具学习笔记-建立CDM

    1.基本术语 1.1.实体和属性 实体(entity):指现实世界中客观存在,并可相互区别的事物或者事件. 属性(attribute):一组用来描述实体特征的属性. 实体集(entity set):具 ...

  8. vue 将值存储到vuex 报错问题

    报错 :Vuex - Computed property “name” was assigned to but it has no setter 如何解决: computed: { addModal: ...

  9. Alpha 冲刺八

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 完善各自部分 项目描 ...

  10. node之文件的下载

    /** * 文件的下载 */ let express = require('express'); let app = express(); app.get('/',(req,res)=>{ re ...