bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294
如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放
设第k种颜色的棋子有a[k]个
令g[k][i][j] 表示第k种颜色的棋子,恰好占据i行j列的方案数
g[k][i][j]=C(i*j,a[k])-Σh Σl g[h][l]*C(i,h)*C(j,l) 1<=h<=i,1<=l<=j,且满足 h!=i 或 l !=j
即 总方案数(在i*j个格子中选a[k]个) 减去 没有恰好占据i行j列的方案数
令f[k][i][j] 表示前k种颜色的棋子,放完之后,还剩下i行j列的方案数
f[k][i][j]= Σh Σl f[k-1][h][l]*g[k][h-i][l-j]*C[h][h-i]*C[l][l-j] i<h<=n,j<l<=m
即 枚举前k-1种颜色的棋子放完后,剩下h行l列,那么 第k种颜色就占据h-i行l-j列
#include<cstdio> using namespace std; const int mod=1e9+; #define min(x,y) x<y ? x : y #define N 31
#define M 11 int C[N*N][N*N]; int a[M];
long long g[M][N][N],f[M][N][N]; int main()
{
int n,m,c;
scanf("%d%d%d",&n,&m,&c);
for(int i=;i<=c;++i) scanf("%d",&a[i]);
int lim=n*m;
C[][]=;
for(int i=;i<=lim;++i)
{
C[i][]=;
for(int j=;j<=i;++j) C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
int r1,r2;
for(int k=;k<=c;++k)
{
r1=min(a[k],n);
for(int i=;i<=r1;++i)
{
r2=min(a[k],m);
for(int j=;j<=r2;++j)
if(i*j>=a[k])
{
g[k][i][j]=C[i*j][a[k]];
for(int h=;h<=i;++h)
for(int l=;l<=j;++l)
if((h!=i || l!=j) && h*l>=a[k])
{
g[k][i][j]-=g[k][h][l]*C[i][h]%mod*C[j][l]%mod;
if(g[k][i][j]<) g[k][i][j]+=mod;
}
}
}
}
f[][n][m]=;
for(int k=;k<=c;++k)
for(int i=;i<n;++i)
for(int j=;j<m;++j)
for(int h=i+;h<=n;++h)
for(int l=j+;l<=m;++l)
if((h-i)*(l-j)>=a[k])
f[k][i][j]=(f[k][i][j]+f[k-][h][l]*g[k][h-i][l-j]%mod*C[h][h-i]%mod*C[l][l-j]%mod)%mod;
int ans=;
for(int i=;i<n;++i)
for(int j=;j<m;++j)
{
ans+=f[c][i][j];
if(ans>=mod) ans-=mod;
}
printf("%d",ans);
return ;
}
3294: [Cqoi2011]放棋子
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 797 Solved: 319
[Submit][Status][Discuss]
Description
Input
Output
输出仅一行,即方案总数除以 1,000,000,009的余数。
Sample Input
3 1
Sample Output
bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子的更多相关文章
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- BZOJ3294: [Cqoi2011]放棋子
Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...
- bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对
http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- bzoj千题计划307:bzoj5248: [2018多省省队联测]一双木棋
https://www.lydsy.com/JudgeOnline/problem.php?id=5248 先手希望先手得分减后手得分最大,后手希望先手得分减后手得分最小 棋盘的局面一定是阶梯状,且从 ...
随机推荐
- 巧用cheerio重构grunt-inline
grunt-inline是楼主之前写的一个插件,主要作用是把页面带了__inline标记的资源内嵌到html页面去.比如下面的这个script标签. <script src="main ...
- 如何使用SVN
如何正确高效地管理软件的版本是一件让人头疼的事情,使用SVN是一个不错的选择.下面简要介绍SVN在windows xp和redhat两种平台下的使用.SVN软件包括服务器端和客户端程序. 1.如何在W ...
- 【原】python3.7 无法pip安装提示ssl错误解决方案
问题 pip is configured with locations that require TLS/SSL, however the ssl module in Python is not av ...
- Intellij IDEA 2017 debug断点调试技巧与总结详解篇
转载自csdn----------------------------------------------------------------------https://blog.csdn.net/q ...
- Grin v0.5在Ubuntu下的安装和启动
Grin和bitcoin一样也是一种点对点的现金交易系统,但它通过零和验证算法,使得双方的交易金额不会被第三方知晓,让它在隐私保护方面更强.其官方的介绍是: 所有人的电子交易,没有审查或限制.并提出它 ...
- 科普贴 | 以太坊网络中的Gas Limit 和 Gas Price 是什么概念?
接触以太坊的同学都听过 Gas/ Gas Price/ Gas Limit,那么这些词汇究竟是什么意思? 还有,为什么有时候你的ETH转账会很慢?如何提高ETH转账速度? Ethereum平台 Vit ...
- PHP学习 流程控制和数组
flow control 流程控制decision structure 判断结构loop structure 循环结构 if(condition){statement1;} if(){}else{} ...
- ElasticSearch读写原理
es 写入数据的工作原理是什么啊?es 查询数据的工作原理是什么啊?底层的 lucene 介绍一下呗?倒排索引了解吗? es 写数据过程 客户端选择一个 node 发送请求过去,这个 node 就是 ...
- Redis学习笔记之入门基础知识——其他特性
1.订阅(subscribe)与发布(publish) 用户订阅某一个频道,频道发布新的信息时,会将信息告知用户 2.数据安全 1) 快照持久化(时间点转储,实质是数据副本) 操作:SAVA. ...
- Linux内核设计与实现 第一章 第二章
第一章 Linux内核简介 Unix特点: (1) Unix很简洁,仅仅提供几个几百个系统调用并且有一个非常明确的设计目的 (2) 在Unix中,所有的东西都被当作文件对待,通过一套相 ...