http://acm.fzu.edu.cn/problem.php?pid=1005

Description

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Then output a line containing the total distance sum.

Output a blank line after each test case.

Sample Input

6 3
5 6 12 19 20 27
0 0

Sample Output

Chain 1 Total distance sum = 8
 
题目大意:
 
给你 n k ,n 代表有 n  个点, 让你从中选出 k 个点, 求这 n 个点到达这 k 个点中的任何一个点的距离总和最小 
 
 
n个旅馆和k个补给站的问题

假设有3个旅馆坐标分别是 1, 4, 5, 和2个补给站,那么路程代价就是1了,一个补给站放在坐标为1的旅馆那,令一个放在4位置处。

也可以一个补给站放在坐标为 1 的旅馆那,令一个放在 5 位置处。
 
//dp[i][k]表示前i个店添加k个供应点所达到的最小值
//状态转移方程为:dp[i][k] = min(dp[j][k-1], sum[j+1][i]),
//其中k-1 <= j <= i-1, sum[i][j]表示从第i个饭店到第j个饭店添加一个供应点所达到的最小值,取i,j中间值即可
 
 
 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
using namespace std; #define N 220
#define MOD 1000000007
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f int dp[N][N], sum[N][N], a[N]; int main()
{
int n, m, iCase=; while(scanf("%d%d", &n, &m), n||m)
{
int i, j, k; for(i=; i<=n; i++)
scanf("%d", &a[i]); for(i=; i<=n; i++)
{
sum[i][i] = ;
for(j=i+; j<=n; j++)
{
sum[i][j] = sum[i][j-] + a[j] - a[(i+j)/];
}
} for(i=; i<=n; i++)
for(j=; j<=m; j++)
dp[i][j] = INF; dp[][] = ;
for(i=; i<=n; i++)
{
for(k=; k<=m; k++)
{
for(j=k-; j<i; j++)
{
dp[i][k] = min(dp[i][k], dp[j][k-]+sum[j+][i]);
}
}
} printf("Chain %d\n", iCase++);
printf("Total distance sum = %d\n\n", dp[n][m]);
}
return ;
}

记忆化搜索:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
using namespace std; #define N 220
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0xffffff
const long long Max = ;
typedef long long LL; int a[N], sum[N][N], dp[N][N];
int n, m; int DFS(int x, int y)
{
int j; if(x< || y<) return INF; if(dp[x][y]!=INF) return dp[x][y]; if(y>=x) ///这点我还是想不到
{
dp[x][y] = ;
return ;
} for(j=; j<=x; j++) ///在 [1,x] 中选择一个点作为补给站
dp[x][y] = min(dp[x][y], DFS(j-, y-) + sum[j][x]); return dp[x][y];
} int main()
{
int iCase=; while(scanf("%d%d", &n, &m), n||m)
{
int i, j; met(sum, );
met(a, ); for(i=; i<=n; i++)
scanf("%d", &a[i]); for(i=; i<=n; i++)
for(j=i+; j<=n; j++)
sum[i][j] = sum[i][j-] + a[j]-a[(i+j)/]; for(i=; i<=n; i++)
for(j=; j<=m; j++)
dp[i][j] = INF; dp[n][m] = DFS(n, m); printf("Chain %d\n", iCase++);
printf("Total distance sum = %d\n\n", dp[n][m]);
}
return ;
}

(记忆化搜索)Jury Compromise (poj 1015)的更多相关文章

  1. Jury Compromise POJ - 1015 dp (标答有误)背包思想

    题意:从 n个人里面找到m个人  每个人有两个值  d   p     满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j]  i个人中  和 ...

  2. POJ 1088 滑雪(记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 92384   Accepted: 34948 Description ...

  3. poj 3249 Test for Job (DAG最长路 记忆化搜索解决)

    Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8990   Accepted: 2004 Desc ...

  4. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

  5. poj 3249(bfs+dp或者记忆化搜索)

    题目链接:http://poj.org/problem?id=3249 思路:dp[i]表示到点i的最大收益,初始化为-inf,然后从入度为0点开始bfs就可以了,一开始一直TLE,然后优化了好久才4 ...

  6. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  7. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  8. POJ 1579 Function Run Fun 【记忆化搜索入门】

    题目传送门:http://poj.org/problem?id=1579 Function Run Fun Time Limit: 1000MS   Memory Limit: 10000K Tota ...

  9. POJ 1088 滑雪 DFS 记忆化搜索

    http://poj.org/problem?id=1088 校运会放假继续来水一发^ ^ 不过又要各种复习,功课拉下了许多 QAQ. 还有呀,就是昨天被一个学姐教育了一番,太感谢了,嘻嘻^ ^ 好了 ...

随机推荐

  1. Vue filter-v-for 使用

    var app5 = new Vue({ el: '#app5', data: { shoppingList: [ "Milk", "Donuts", &quo ...

  2. springBoot整合Quarzt2.3

    首先,你要配置好springboot的配置(在resources下) 我把其改为application.yml # Tomcat server: tomcat: uri-encoding: UTF-8 ...

  3. Bonding

    一.简介 双网卡配置设置虚拟为一个网卡实现网卡的冗余,其中一个网卡坏掉后网络通信仍可正常使用,实现网卡层面的负载均衡和高可用性   二.原理 网卡工作在混杂(promisc)模式,接收到达网卡的所有数 ...

  4. html标签二

    1.没有前后顺序的信息列表<ul> <li></li> <li></li></ul>2.有序列表 <ol>  < ...

  5. ES6 Reflect的认识

    首先我们要了解一下,为什么会新添加这么一个全局对象?如果你看过Reflect的一些函数,你就会发现,这个对象上的方法基本上都可以从Object上面找到,找不到的那些,也是可以通过对对象命令式的操作去实 ...

  6. ubuntu12.04下Qt调试器的使用

    最近,我一直在用Qt编写C++程序,但在编写过程中遇到了问题,想用Qt Creator中的调试器调试一下,但调试时(在Qt Creator中已配置好相应的调试器)出现“ ptrace:Operatio ...

  7. [Chrome Headless + Python] 截长图 (Take Full-page Screenshot)

    # -*- coding: utf-8 -*- import time import os from selenium import webdriver from selenium.webdriver ...

  8. [ ZooKeeper]ZooKeeper 的功能和原理

    Zookeeper功能简介: ZooKeeper 是一个开源的分布式协调服务,由雅虎创建,是 Google Chubby 的开源实现.分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅 ...

  9. 设计师都爱用的UI标注软件有哪些?

    UI标注软件现在是设计师(UI.PM.前端等)必备的一款软件.设计稿是UI设计师日常工作中的产出物之一,当然,做出了高保真设计稿并不意味着你的工作结束了,因为你还得与下游的开发工程师进行对接. 我们经 ...

  10. IOS初级:AFNetworking

    狗 日的,第三方框架真j8难搞 1.为什么NS_ASSUME_NONNULL_BEGIN在6.2报错,你他么的还挑IDE,你这是什么态度? 2.还有,你他么的自动给老子转json了,有问过我么? #i ...