http://acm.fzu.edu.cn/problem.php?pid=1005

Description

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

To make this more precise, the management of McBurger has issued the following specification: You will be given the positions of n restaurants along the highway as n integers d1 < d2 < ... < dn (these are the distances measured from the company's headquarter, which happens to be at the same highway). Furthermore, a number k (k <= n) will be given, the number of depots to be built.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Then output a line containing the total distance sum.

Output a blank line after each test case.

Sample Input

6 3
5 6 12 19 20 27
0 0

Sample Output

Chain 1 Total distance sum = 8
 
题目大意:
 
给你 n k ,n 代表有 n  个点, 让你从中选出 k 个点, 求这 n 个点到达这 k 个点中的任何一个点的距离总和最小 
 
 
n个旅馆和k个补给站的问题

假设有3个旅馆坐标分别是 1, 4, 5, 和2个补给站,那么路程代价就是1了,一个补给站放在坐标为1的旅馆那,令一个放在4位置处。

也可以一个补给站放在坐标为 1 的旅馆那,令一个放在 5 位置处。
 
//dp[i][k]表示前i个店添加k个供应点所达到的最小值
//状态转移方程为:dp[i][k] = min(dp[j][k-1], sum[j+1][i]),
//其中k-1 <= j <= i-1, sum[i][j]表示从第i个饭店到第j个饭店添加一个供应点所达到的最小值,取i,j中间值即可
 
 
 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
using namespace std; #define N 220
#define MOD 1000000007
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f int dp[N][N], sum[N][N], a[N]; int main()
{
int n, m, iCase=; while(scanf("%d%d", &n, &m), n||m)
{
int i, j, k; for(i=; i<=n; i++)
scanf("%d", &a[i]); for(i=; i<=n; i++)
{
sum[i][i] = ;
for(j=i+; j<=n; j++)
{
sum[i][j] = sum[i][j-] + a[j] - a[(i+j)/];
}
} for(i=; i<=n; i++)
for(j=; j<=m; j++)
dp[i][j] = INF; dp[][] = ;
for(i=; i<=n; i++)
{
for(k=; k<=m; k++)
{
for(j=k-; j<i; j++)
{
dp[i][k] = min(dp[i][k], dp[j][k-]+sum[j+][i]);
}
}
} printf("Chain %d\n", iCase++);
printf("Total distance sum = %d\n\n", dp[n][m]);
}
return ;
}

记忆化搜索:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <string>
#include <map>
using namespace std; #define N 220
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0xffffff
const long long Max = ;
typedef long long LL; int a[N], sum[N][N], dp[N][N];
int n, m; int DFS(int x, int y)
{
int j; if(x< || y<) return INF; if(dp[x][y]!=INF) return dp[x][y]; if(y>=x) ///这点我还是想不到
{
dp[x][y] = ;
return ;
} for(j=; j<=x; j++) ///在 [1,x] 中选择一个点作为补给站
dp[x][y] = min(dp[x][y], DFS(j-, y-) + sum[j][x]); return dp[x][y];
} int main()
{
int iCase=; while(scanf("%d%d", &n, &m), n||m)
{
int i, j; met(sum, );
met(a, ); for(i=; i<=n; i++)
scanf("%d", &a[i]); for(i=; i<=n; i++)
for(j=i+; j<=n; j++)
sum[i][j] = sum[i][j-] + a[j]-a[(i+j)/]; for(i=; i<=n; i++)
for(j=; j<=m; j++)
dp[i][j] = INF; dp[n][m] = DFS(n, m); printf("Chain %d\n", iCase++);
printf("Total distance sum = %d\n\n", dp[n][m]);
}
return ;
}

(记忆化搜索)Jury Compromise (poj 1015)的更多相关文章

  1. Jury Compromise POJ - 1015 dp (标答有误)背包思想

    题意:从 n个人里面找到m个人  每个人有两个值  d   p     满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j]  i个人中  和 ...

  2. POJ 1088 滑雪(记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 92384   Accepted: 34948 Description ...

  3. poj 3249 Test for Job (DAG最长路 记忆化搜索解决)

    Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8990   Accepted: 2004 Desc ...

  4. (区间dp + 记忆化搜索)Treats for the Cows (POJ 3186)

    http://poj.org/problem?id=3186   Description FJ has purchased N (1 <= N <= 2000) yummy treats ...

  5. poj 3249(bfs+dp或者记忆化搜索)

    题目链接:http://poj.org/problem?id=3249 思路:dp[i]表示到点i的最大收益,初始化为-inf,然后从入度为0点开始bfs就可以了,一开始一直TLE,然后优化了好久才4 ...

  6. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  7. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  8. POJ 1579 Function Run Fun 【记忆化搜索入门】

    题目传送门:http://poj.org/problem?id=1579 Function Run Fun Time Limit: 1000MS   Memory Limit: 10000K Tota ...

  9. POJ 1088 滑雪 DFS 记忆化搜索

    http://poj.org/problem?id=1088 校运会放假继续来水一发^ ^ 不过又要各种复习,功课拉下了许多 QAQ. 还有呀,就是昨天被一个学姐教育了一番,太感谢了,嘻嘻^ ^ 好了 ...

随机推荐

  1. jquery插件之选项卡

    jQuery插件编写 首先来一个简拓展jQuery对象的方法 <body > <p>23</p> <script src="js/jquery-1. ...

  2. Android开发之ListView设置隔行变色

    public class HLCheckAdapter extends BaseAdapter { private List<HuoLiang> list; private Context ...

  3. HISAT,sTRINGTIE,ballgown三款RNA-seq信息分析软件

    HISAT,sTRINGTIE,ballgown三款RNA-seq信息分析软件 2015年04月02日 11:35:47 夜丘 阅读数:8940 标签: 生物 更多 个人分类: 论文笔记   Bowt ...

  4. HDOJ2089 不要62

    原题链接 数位\(DP\)入门题. 记录前一个枚举到的数位,在每次枚举的时候避开\(4\),如果前一个数位为\(6\),还要跳过\(2\). 然后套上记搜模板就好. #include<cstdi ...

  5. 10个办法让设计小白迅速get海报设计要点!

    对于设计师而言,海报和宣传单的设计,几乎是每一个设计师的必修课.如今网页上的 Banner.宣传和促销的数字海报,大多脱胎于我们所熟知的海报设计. 对于推销产品.连接客户,海报始终是一种最为有趣和实用 ...

  6. UI设计师需要熟记的45个快捷键Windows、Mac

    大家都知道PS快捷键很多,其实没必要都记住,今天为大家整理了45个比较实用的,别忘了收藏. 图层 填充图层 MAC: Alt+Backspace (前景) or Cmd+Backspace (背景) ...

  7. Servlet会话管理三(HttpSession)

    Session是服务器端技术,服务器在运行时可以为每一个用户的浏览器创建一个其独享的HttpSession对象.由于Session为浏览器用户所独享,所以用户在访问服务器的web资源时,可以把各自的数 ...

  8. DbUtils类的添加,修改,删除

    package cn.jy.demo; import java.sql.Connection;import java.sql.SQLException; import org.apache.commo ...

  9. 用visual studio 2017来调试python

    https://www.visualstudio.com/zh-hans/thank-you-downloading-visual-studio/?sku=Professional&rel=1 ...

  10. Spring Boot学习笔记:传统maven项目与采用spring boot项目区别

    项目结构区别 传统的maven构建的项目结构如下: 用maven构建的采用springboot项目结构如下: 二者结构一致,区别如下:传统项目如果需要打成war包,需要在WEB-INF目录结构配置we ...