poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数
poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数
题目大意:如题目所示
给你一些关系图——连通图,想要问你有没有个节点,损坏后,可以生成几个互相独立的网络(也就是连通分量),所以我们利用tarjan算法,求取一个联通分量的点,记录次数,因为访问几次,就代表这个点的不同方向上的联通分量的个数,记录下来,最后输出即可
至于根节点的选取,选谁都没什么问题的,我默认选的节点1
嗯,没什么了,tarjan算法到这算是入门啦
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
const int maxn = 1e3 + 10;
struct node{
int to,pre;
}e[maxn * 2];
int id[maxn],cnt;
int index;
int root;
int dfn[maxn],low[maxn];
int subnets[maxn];
int flag;
int p_cnt;
void init()
{
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(subnets,0,sizeof(subnets));
memset(id,-1,sizeof(id));
index = 0;
flag = 0;
cnt = 0;
p_cnt = 0;
}
void add(int u,int v)
{
e[cnt].to = v;
e[cnt].pre = id[u];
id[u] = cnt++;
p_cnt = max(max(u,v),p_cnt);
} void tarjan(int u,int pre)
{
int son = 0;
dfn[u] = low[u] = ++index;
for(int i = id[u];~i;i = e[i].pre)
{
int v = e[i].to;
if(!dfn[v])
{
tarjan(v,u);
son++;
low[u] = min(low[v],low[u]); if(u == root && son > 1)
{
flag = 1;
subnets[u]++;//发现一个
}
if(u != root && low[v] >= dfn[u])
{
subnets[u]++;//发现一个连通分量
flag = 1;
}
}
else if(v != pre)
{
low[u] = min(low[u],dfn[v]);
}
}
}
int main()
{
int cas = 0;
while(true)
{
int u,v = -1;
init();
while(scanf("%d",&u),u)
{
scanf("%d",&v);
add(u,v);
add(v,u);
}
if(v == -1)break;
root = 1;
tarjan(root,-1); printf("Network #%d\n",++cas);
if(flag)
{
for(int i = 1;i <= p_cnt;i++)
{
if(subnets[i] > 0)
{
printf(" SPF node %d leaves %d subnets\n",i,subnets[i]+1);//加上fa->u该边所连接的连通分量
}
}
}
else
{
printf(" No SPF nodes\n");
}
printf("\n");
}
return 0;
}
poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数的更多相关文章
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- SPF Tarjan算法求无向图割点(关节点)入门题
SPF 题目抽象,给出一个连通图的一些边,求关节点.以及每个关节点分出的连通分量的个数 邻接矩阵只要16ms,而邻接表却要32ms, 花费了大量的时间在加边上. // time 16ms 1 ...
- K:求取数组中最大连续子序列和的四个算法
相关介绍: 求取数组中最大连续子序列和问题,是一个较为"古老"的一个问题.该问题的描述为,给定一个整型数组(当然浮点型也是可以的啦),求取其下标连续的子序列,且其和为该数组的所有 ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
- POJ 2104 K-th Number ( 求取区间 K 大值 || 主席树 || 离线线段树)
题意 : 给出一个含有 N 个数的序列,然后有 M 次问询,每次问询包含 ( L, R, K ) 要求你给出 L 到 R 这个区间的第 K 大是几 分析 : 求取区间 K 大值是个经典的问题,可以使用 ...
- OpenCV 最小二乘拟合方法求取直线倾角
工业相机拍摄的图像中,由于摄像质量的限制,图像中的直线经过处理后,会表现出比较严重的锯齿.在这种情况下求取直线的倾角(其实就是直线的斜率),如果是直接选取直线的开始点和结束点来计算,或是用opencv ...
- POJ 2299树状数组求逆序对
求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...
- 算法笔记_042:求最小公倍数(Java)
目录 1 问题描述 2 解决方案 1 问题描述 何为最小公倍数?能同时被数字m和数字n整除的最小整数.例如,24和60的最小公倍数等于120.下面请编写相关函数实现求取数字m和n的最小公倍数. 2 ...
- tarjan求割边割点
tarjan求割边割点 内容及代码来自http://m.blog.csdn.net/article/details?id=51984469 割边:在连通图中,删除了连通图的某条边后,图不再连通.这样的 ...
随机推荐
- Executors提供的四种线程池
Java 5+中的Executor接口定义一个执行线程的工具.它的子类型即线程池接口是ExecutorService.要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具 ...
- [转载]linux中sed的用法
转自:http://www.cnblogs.com/emanlee/archive/2013/09/07/3307642.html sed命令行格式为: sed [-nefri] ‘ ...
- 洛谷1066 2^k进制数
原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...
- CH#56C 异象石
一道LCA 原题链接 先跑一边\(dfs\),求出每个节点的时间戳,如果我们将有异象石的节点按时间戳从小到大的顺序排列,累加相邻两节点之间的距离(首尾相邻),会发现总和就是答案的两倍. 于是我们只需要 ...
- 常用到的photoshop实用设计功能都在这了!
常用到的photoshop实用设计功能都在这了!赶快收藏学起来,需转不谢~ 编辑:千锋UI设计
- .net获取本地ip地址
整理代码,.net获取本地ip地址,代码如下: string name = Dns.GetHostName(); IPHostEntry IpEntry = Dns.GetHostEntry(name ...
- JavaScript 内存泄漏教程
一.什么是内存泄漏? 程序的运行需要内存.只要程序提出要求,操作系统或者运行时(runtime)就必须供给内存. 对于持续运行的服务进程(daemon),必须及时释放不再用到的内存.否则,内存占用越来 ...
- 【Java】生成图形验证码
本章介绍一个能生成比较好看的图形验证码类 生成验证码工具类 package com.util; import java.awt.Color; import java.awt.Font; import ...
- Linux日志文件总管——logrotate
日志文件包含了关于系统中发生的事件的有用信息,在排障过程中或者系统性能分析时经常被用到.对于忙碌的服务器,日志文件大小会增长极快,服务器会很快消耗磁盘空间,这成了个问题.除此之外,处理一个单个的庞大日 ...
- 494. Target Sum - Unsolved
https://leetcode.com/problems/target-sum/#/description You are given a list of non-negative integers ...