FAST特征点检测算法
一 原始方法
简介
在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者。
从最早期的Moravec,到Harris,再到SIFT、SUSAN、GLOH、SURF算法,可以说特征提取算法层出不穷。各种改进算法PCA-SIFT、ICA-SIFT、P-ASURF、R-ASURF、Radon-SIFT等也是搞得如火如荼,不亦乐乎。上面的算法如SIFT、SURF提取到的特征也是非常优秀(有较强的不变性),但是时间消耗依然很大,而在一个系统中,特征提取仅仅是一部分,还要进行诸如配准、提纯、融合等后续算法。这使得实时性不好,降系了统性能。
Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。
FAST详解
FAST特征的定义
FAST的提出者Rosten等将FAST角点定义为:若某像素与其周围邻域内足够多的像素点相差较大,则该像素可能是角点。
FAST算法的步骤
1、上图所示,一个以像素p为中心,半径为3的圆上,有16个像素点(p1、p2、...、p16)。
2、定义一个阈值。计算p1、p9与中心p的像素差,若它们绝对值都小于阈值,则p点不可能是特征点,直接pass掉;否则,当做候选点,有待进一步考察;
3、若p是候选点,则计算p1、p9、p5、p13与中心p的像素差,若它们的绝对值有至少3个超过阈值,则当做候选点,再进行下一步考察;否则,直接pass掉;
4、若p是候选点,则计算p1到p16这16个点与中心p的像素差,若它们有至少9个超过阈值,则是特征点;否则,直接pass掉。
5、对图像进行非极大值抑制:计算特征点出的FAST得分值(即score值,也即s值),判断以特征点p为中心的一个邻域(如3x3或5x5)内,计算若有多个特征点,则判断每个特征点的s值(16个点与中心差值的绝对值总和),若p是邻域所有特征点中响应值最大的,则保留;否则,抑制。若邻域内只有一个特征点(角点),则保留。得分计算公式如下(公式中用V表示得分,t表示阈值):
上面是FAST-9,当然FAST-10、FAST-11、FAST-12也是一样的,只是步骤4中,超过阈值的个数不一样。FAST算法实现起来简单,尤其是以速度快著称。
以上便是FAST特征检测的过程,清晰明了,而对于角点的定义也是做到了返璞归真,大师就是大师,还原本质的能力很强,估计以前这种简单想法被很多人忽略了。
# -*-coding:utf-8-*- import cv2
import datetime img1 = cv2.imread('/home/260158/code/pictures-data/CMU0/medium00.JPG') starttime = datetime.datetime.now() fast = cv2.FastFeatureDetector_create(90)
kp = fast.detect(img1,None)
img2 = cv2.drawKeypoints(img1,kp,(0,0,255)) endtime = datetime.datetime.now()
a = endtime- starttime #cv2.namedWindow('fast', cv2.WINDOW_NORMAL) cv2.imshow('fast',img2)
cv2.waitKey(0)
print a
结果
FAST特征点检测算法的更多相关文章
- FAST特征点检测&&KeyPoint类
FAST特征点检测算法由E.Rosten和T.Drummond在2006年在其论文"Machine Learning for High-speed Corner Detection" ...
- 特征点检测算法——FAST角点
上面的算法如SIFT.SURF提取到的特征也是非常优秀(有较强的不变性),但是时间消耗依然很大,而在一个系统中,特征提取仅仅是一部分,还要进行诸如配准.提纯.融合等后续算法.这使得实时性不好,降系了统 ...
- FAST特征点检测
Features From Accelerated Segment Test 1. FAST算法原理 博客中已经介绍了很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测) ...
- matlab练习程序(FAST特征点检测)
算法思想:如果一个像素与它邻域的像素差别较大(过亮或过暗) , 那它更可能是角点. 算法步骤: 1.上图所示,一个以像素p为中心,半径为3的圆上,有16个像素点(p1.p2.....p16). 2.定 ...
- OpenCV特征点检测算法对比
识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...
- FAST特征点检测features2D
#include <opencv2/core/core.hpp> #include <opencv2/features2d/features2d.hpp> #include & ...
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- ORB特征点检测
Oriented FAST and Rotated BRIEF www.cnblogs.com/ronny 这篇文章我们将介绍一种新的具有局部不变性的特征 -- ORB特征,从它的名字中可以看出它 ...
- OpenCV特征点提取----Fast特征
1.FAST(featuresfrom accelerated segment test)算法 http://blog.csdn.net/yang_xian521/article/details/74 ...
随机推荐
- linux文件权限说明
# ll total 0 drwxr-xr-x. 2 root root 6 Aug 28 11:07 test1 drwxr-xr-x. 2 root root 6 Aug 28 11:07 tes ...
- 公共技术点( View 绘制流程)
转载地址:http://p.codekk.com/blogs/detail/54cfab086c4761e5001b253f 本文为 Android 开源项目源码解析 公共技术点中的 View 绘制流 ...
- 一口一口吃掉Volley(二)
欢迎访问我的个人博客转发请注明出处:http://www.wensibo.top/2017/02/17/一口一口吃掉Volley(二)/ 相信看了第一篇教程之后,你应该会对Volley有一个初步的了解 ...
- 【转】深入理解Java中的final关键字
Java 中的final关键字非常重要,它可以应用于类.方法以及变量.这篇文章中我将带你看看什么是final关键字?将变量,方法和类声明为final代表了 什么?使用final的好处是什么?最后也有一 ...
- ThreadPoolExecutor参数讲解
1. 线程池可以节省创建多个线程带来的开销问题. 2. 线程池的参数如下: public ThreadPoolExecutor(int corePoolSize, int maximumPoolSiz ...
- centos7-使用nginx做ftp站
关于nginx的安装可见: http://www.cnblogs.com/wenbronk/p/6557482.html 然后最简单的方式, 修改nginx的配置文件: server { listen ...
- Visual Studio 2017 取消 break mode
用 Visual Studio 2017 (以下简称 VS 2017) 运行程序,程序出错后,只是进入中断模式,仅显示 The application is in break mode而没有像 VS ...
- 【转载】配置文件报错:不允许有匹配 [xX][mM][lL] 的处理指令目标
今天编写代码的时候,不小心给一个xml文件的首行加了一行空格,导致了启动报了如题类似的错误,查到一篇文章,顺藤摸瓜发现了这个失误,文章转载如下: 框架整合 的时候,XML 配置文件大多数情况是从另一个 ...
- 边界扫描(boundary scan)
边界扫描(Boundary scan )是一项测试技术,是在传统的在线测试不在适应大规模,高集成电路测试的情况下而提出的,就是在IC设计的过程中在IC的内部逻辑和每个器件引脚间放置移位寄存器(shif ...
- Python面试题目--汇总
原文链接-https://github.com/taizilongxu/interview_python Python语言特性 1 Python的函数参数传递 2 Python中的元类(metacla ...