题目链接:https://leetcode.com/problems/longest-palindromic-subsequence/description/

题目大意:找出最长回文子序列(不连续),第5题是最长回文子串。

法一(借鉴):dp,与5题,最长回文子串进行比较,这个dp更难一点。代码如下(耗时51ms):

     //dp公式:dp[i,j]=2表示下标i到j的字符串中,最长回文子序列长度是2
//当s[i]=s[j]时,dp[i,j]=dp[i+1,j-1]+2
//当s[i]!=s[j]时,dp[i,j]=max(dp[i+1,j],dp[i,j-1])
public int longestPalindromeSubseq(String s) {
int length = s.length();
int dp[][] = new int[length][length];
for(int i = length - 1; i >= 0; i--) {//从后向前dp计算,不知道为什么。。。
dp[i][i] = 1;
for(int j = i + 1; j < length; j++) {//逐一查看每个字符串中的字符序列是否有回文
if(s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
}
else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i + 1][j]);
}
}
}
return dp[0][length - 1];
}

dp数组(例子:bbab):

  0("b") 1("b") 2("a") 3("b")
0("b") 1(b) 2(bb) 2(bba) 3(bbab)
1("b")   1(b) 1(ba) 3(bab)
2("a")     1(a) 1(ab)
3("b")       1(b)

可以从上表看出最后结果在dp[0][3]中。

dp数组填充顺序:从下向上,每次计算都使用左边、下边,左下的数据。

法二(借鉴):记忆性搜索,其实感觉还是dp的思想,但是会比纯dp快。代码如下(耗时39ms):

     public int longestPalindromeSubseq(String s) {
return dfs(s, 0, s.length() - 1, new int[s.length()][s.length()]);
}
public static int dfs(String s, int i, int j, int dp[][]) {
if(dp[i][j] != 0) {//如果已经有值,则直接返回,代表记忆性
return dp[i][j];
}
if(i > j) {
return 0;
}
if(i == j) {
return 1;
}
if(s.charAt(i) == s.charAt(j)) {
dp[i][j] = dfs(s, i + 1, j - 1, dp) + 2;
}
else {
dp[i][j] = Math.max(dfs(s, i + 1, j, dp), dfs(s, i, j -1, dp));
}
return dp[i][j];
}

516.Longest Palindromic subsequence---dp的更多相关文章

  1. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  2. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  3. 516. Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  5. LC 516. Longest Palindromic Subsequence

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  6. 【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 代码 刷题心得 日期 题目地址:https://le ...

  7. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  8. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  9. 【leetcode】516. Longest Palindromic Subsequence

    题目如下: 解题思路:很经典的动态规划题目,但是用python会超时,只好用C++了. 代码如下: class Solution { public: int longestPalindromeSubs ...

  10. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. 【明哥报错簿】之【 "javax.servlet.http.HttpServlet" was not found on the Java Build Path || HttpServletRequest/HttpServletResponse cannot be resolved to a type】

    The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path login ...

  2. 【Java】全站编码过滤器GenericEncodingFilter代码与配置

    编码过滤器GenericEncodingFilter:   package com.fuck.web.filter; import java.io.IOException; import java.i ...

  3. [BZOJ4103][Thu Summer Camp 2015]异或运算 可持久化Trie树

    4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1 ...

  4. [TJOI2015]线性代数 网络流

    题面 题面 题解 先化一波式子: \[D = (A \cdot B - C)A^T \] \[ = \sum_{i = 1}^{n}H_{1i}\cdot A^T_{i1}\] \[H_{1i} = ...

  5. Bootstrap 环境安装

    下载 Bootstrap 可以从 http://getbootstrap.com/ 上下载 Bootstrap 的最新版本.当点击这个链接时,将看到如下所示的网页: 您会看到两个按钮: Downloa ...

  6. 基于数组实现Java 自定义Stack栈类及应用

    栈是存放对象的一种特殊容器,在插入与删除对象时,这种结构遵循后进先出( Last-in-first-out,LIFO)的原则.java本身是有自带Stack类包,为了达到学习目的已经更好深入了解sta ...

  7. BZOJ1002【FJOI2007】轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6917  Solved: 3777[Submit][Statu ...

  8. 【learning】中国剩余定理

    问题描述 "今有物不知其数,三三数之余二,五五数之余三,七七数之余二.问物几何?" emmm这是..最开始这个问题被提出来的描述 其实说白了就是求解一次同余式组 然后还可以..解决 ...

  9. python基础----isinstance(obj,cls)和issubclass(sub,super)、反射、__setattr__,__delattr__,__getattr__、二次加工标准类型(包装)

    一.isinstance(obj,cls)和issubclass(sub,super)                                isinstance(obj,cls)检查是否ob ...

  10. js绑定事件和解绑事件

    在js中绑定多个事件用到的是两个方法:attachEvent和addEventListener,但是这两个方法又存在差异性 attachEvent方法  只支持IE678,不兼容其他浏览器 addEv ...