RMQ

  RMQ(Range Maximum/Minimum Question)是指区间最值问题,在OI中较为常见,一般可以用ST表和线段树实现。

  ST表是基于倍增思想的一种打表方法,在确定区间范围和所有的值后利用倍增预处理出$2^k$长度的区间内的最值,然后$O(1)$查询。优点是查询快且操作简便,缺点是不能进行动态操作,只支持静态查询。

  Code:(POJ模板题

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
int mx[N][],mi[N][];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
void ready()
{
for(int j=;j<=;j++)
for(int i=;i<=n;i++)
if(i+(<<(j-))<=n){
mx[i][j]=max(mx[i][j-],mx[i+(<<(j-))][j-]);
mi[i][j]=min(mi[i][j-],mi[i+(<<(j-))][j-]);}
}
inline int quary(int l,int r)
{
int maxx=-,minn=;
int k=(int)(log((double)(r-l+))/log(2.0));
maxx=max(mx[l][k],mx[r-(<<k)+][k]);
minn=min(mi[l][k],mi[r-(<<k)+][k]);
return maxx-minn;
}
int main()
{
n=read();m=read();
memset(mx,-,sizeof(mx));
memset(mi,0x7f,sizeof(mi));
for(int i=;i<=n;i++){
a[i]=read();
mi[i][]=mx[i][]=a[i];}
ready();int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",quary(x,y));}
return ;
}

  线段树就不用多说了,除了可以同时维护最大和最小值意外,还能维护更多信息,操作同样也方便,而且还支持动态操作。

  Code:

//It is made by HolseLee on 23rd July 2018
//POJ 3264
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<iomanip>
using namespace std;
const int N=5e4+;
int n,m,a[N];
struct Node{
int mx,mi;
Node(int xx=,int yy=)
{mx=xx;mi=yy;}
}seg[N<<];
inline int read()
{
char ch=getchar();int num=;bool flag=false;
while(ch<''||ch>''){if(ch=='-')flag=true;ch=getchar();}
while(ch>=''&&ch<=''){num=num*+ch-'';ch=getchar();}
return flag?-num:num;
}
inline void update(int rt)
{
seg[rt].mx=max(seg[rt<<].mx,seg[rt<<|].mx);
seg[rt].mi=min(seg[rt<<].mi,seg[rt<<|].mi);
}
inline void build(int l,int r,int rt)
{
if(l>r)return;
if(l==r){
seg[rt].mx=seg[rt].mi=a[l];return;}
int mid=(l+r)>>;
build(l,mid,rt<<);build(mid+,r,rt<<|);
update(rt);
}
inline Node quary(int l,int r,int rt,int L,int R)
{
Node ret(-,);
if(l>R||r<L)return ret;
if(L<=l&&r<=R){return seg[rt];}
int mid=(l+r)>>;
Node lc(-,);
Node rc(-,);
if(L<=mid)lc=quary(l,mid,rt<<,L,R);
if(R>mid)rc=quary(mid+,r,rt<<|,L,R);
ret.mx=max(lc.mx,rc.mx);
ret.mi=min(lc.mi,rc.mi);
return ret;
}
inline int get(int x,int y)
{
int maxx=quary(,n,,x,y).mx;
int minn=quary(,n,,x,y).mi;
return maxx-minn;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
a[i]=read();
build(,n,);int x,y;
for(int i=;i<=m;i++){
x=read();y=read();
printf("%d\n",get(x,y));}
return ;
}

实现RMQ的两种常用方法的更多相关文章

  1. jQuery验证元素是否为空的两种常用方法

    这篇文章主要介绍了jQuery验证元素是否为空的两种常用方法,实例分析了两种常用的判断为空技巧,非常具有实用价值,需要的朋友可以参考下 本文实例讲述了jQuery验证元素是否为空的两种常用方法.分享给 ...

  2. 在Quartus II中分配管脚的两种常用方法

    在Quartus II中分配管脚的两种常用方法 示范程序 seg7_test.v 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 /* * ...

  3. vue——props的两种常用方法

    vue--props的两种常用方法 1.实现父-->子的通信 举例如下: 父组件 parent.vue <children :channel="object1"> ...

  4. C#程序实现软件开机自动启动的两种常用方法

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法函数的示例与实例带详细注释 方法一:将软件的快捷方式创建到计算机的自动启动目录下(不需要管理员权限) 1.必要引用 ...

  5. C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式

    C#/WPF/WinForm/.NET程序代码实现软件程序开机自动启动的两种常用方法的示例与源码下载带详细注释-源码代码-注册表方式-启动目录快捷方式 C#实现自动启动的方法-两种方法 源码下载地址: ...

  6. Struts2中validate数据校验的两种常用方法

    本文主要介绍Struts2中validate数据校验的两种方法及Struts2常用校验器.  1.Action中的validate()方法 Struts2提供了一个Validateable接口,这个接 ...

  7. Android 高级UI设计笔记23:Android 夜间模式之 两种常用方法(降低屏幕亮度+替换theme)

    1. 夜间模式 所谓的夜间模式,就是能够根据不同的设定,呈现不同风格的界面给用户,而且晚上看着不伤眼睛.特别是一些新闻类App实现夜间模式是非常人性化的,增强用户体验. 2. 我根据网上的资料 以及自 ...

  8. html文本溢出显示省略字符的两种常用方法

    方法一:使用CSS溢出省略的方式解决 解决效果如下: css代码: display: -webkit-box; display: -moz-box; white-space: pre-wrap; wo ...

  9. Java连接oracle数据库的两种常用方法

    1. 使用thin连接 由于thin驱动都是纯Java代码,并且使用TCP/IP技术通过java的Socket连接上Oracle数据库,所以thin驱动是与平台无关的,你无需安装Oracle客户端,只 ...

随机推荐

  1. 前端PHP入门-032-异常处理-应用级别

    禁止显示错误 在php.ini配置文件中.我们可以控制php的错误显示状态. php.ini中有一个专门的配置项: display_errors 这个选项设置是否将错误信息输出到网页,或者对用户隐藏而 ...

  2. codevs 2796 最小完全图

    2796 最小完全图 http://codevs.cn/problem/2796/  时间限制: 1 s  空间限制: 128000 KB     题目描述 Description 若一个图的每一对不 ...

  3. C++设计实现算法时易犯错误

    1.未初始化 指针未初始化为NULL,造成判断条件出错 数值未初始化为0,造成数组超界,内存泄漏 2. long long输入时 lld or I64d 写成d一定出错 3.gcc编译报错:程序中有游 ...

  4. Counting Pair

    Counting Pair Time Limit: 1000 ms Memory Limit: 65535 kB Solved: 112 Tried: 1209 Submit Status Best ...

  5. javascript在IE下不能用 trim函数解决方法

    javascript 的trim 函数在firefox 下面使用没有问题 <script language="javascript"> var test1 = &quo ...

  6. JQuery的链式编程,隐式迭代是啥意思?

    链式编程 1.好处 "一句话,链式编程可以省去很多重复的代码." 这话什么意思呢?举个例子. /*设置obj对象的两个属性*/ //普通做法是这样的 obj.name = '小明' ...

  7. js小记:对象、原型及原型链、面向对象编程

    一.js对象 1.js对象 js对象是一种复合数据类型,它可以把多个(不同类型的)数据集中在一个变量中,并且给每个数据起名字. 2.对象与数组 对象的每个数据有对应的名字(属性名),我们通过叫名字访问 ...

  8. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  9. JS中函数void()

    <a href="javascript:void(0)">hello</a>/* * JS中函数void()的运用大体是这种新式; * void()是运算符 ...

  10. vps建站教程 CentOS6如何安装配置FTP服务器

    通过之前的几篇文章,我们都知道了如何配置PHP环境,也知道如何保护我们的vps以及如何绑定多个域名建设多个网站.有时候我们为了让我们的朋友也能用我们的vps建站又不想给他们太多权限,有时候我们想要当个 ...