「LibreOJ β Round #4」游戏
https://loj.ac/problem/524
题目描述
qmqmqm和sublinekelzrip要进行一场游戏,其规则是这样的:
首先有一个序列,其中每个位置是一个整数或是X。双方轮流将X的位置填入此前不在序列中的实数,直到序列中充满数字为止。qmqmqm优先填数。若最后这个序列的逆序对数目为奇数,则qmqmqm获得胜利,否则sublinekelzrip获得胜利。qmqmqm想知道若双方均采取最优决策,在一个给定的序列下他能否获胜。设最终序列中第iii个数为aia_iai,则逆序对为满足i<ji<ji<j且ai>aja_i>a_jai>aj的有序对(i,j)(i,j)(i,j)的数目
注意虽然起始序列中只有整数,但可以填入非整数的实数。
输入格式
第一行包含一个正整数nnn,表示序列的长度。
之后nnn行,每行或为一个整数aia_iai,或为一个字符X。
输出格式
输出仅包含一个字符,若qmqmqm获胜,输出W
,否则输出L
。
样例
样例输入1
2
X
X
样例输出1
L
样例输入2
2
X
57
样例输出2
W
X为实数意味着X可以填任何数
当序列长度>1时,先手和后手都可以通过X的值任意改变逆序对的奇偶
所以只要X为奇数个,先手必败,否则,先手必胜
特判:n=1先手必败
当序列没有X时,归并排序求一遍逆序对即可
#include<cstdio>
#include<cstring>
using namespace std;
char c[];
int a[],tmp[],len;
long long tot;
void solve(int l,int r)
{
if(l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int i=l,j=mid+,k=l;
while(i<=mid && j<=r)
{
if(a[i]>a[j])
{
tot+=mid-i+;
tmp[k++]=a[j++];
}
else tmp[k++]=a[i++];
}
while(i<=mid) tmp[k++]=a[i++];
while(j<=r) tmp[k++]=a[j++];
for(int i=l;i<=r;i++) a[i]=tmp[i];
}
int main()
{
int n;
scanf("%d",&n);
int sum=;
for(int i=;i<=n;i++)
{
scanf("%s",c);
if(c[]=='X') sum++;
else
{
len=strlen(c);
int s=;
if(c[]=='-') s=;
for(int j=s;j<len;j++) a[i]=a[i]*+c[j]-'';
if(s&) a[i]=-a[i];
}
}
if(n==) { putchar('L'); return ; }
if(!sum)
{
solve(,n);
if(tot&) putchar('W');
else putchar('L');
return ;
}
if(sum&) putchar('W');
else putchar('L');
}
「LibreOJ β Round #4」游戏的更多相关文章
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- LibreOJ #524. 「LibreOJ β Round #4」游戏
二次联通门 : LibreOJ #524. 「LibreOJ β Round #4」游戏 /* LibreOJ #524. 「LibreOJ β Round #4」游戏 找找规律就会发现.. 当有X的 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- HttpCookie Class
提供创建和操作各 HTTP Cookie 的类型安全方法. #region 写入指定Cookie的值 +static void WriteCookie(string cookieName, strin ...
- lintcode-120-单词接龙
120-单词接龙 给出两个单词(start和end)和一个字典,找到从start到end的最短转换序列 比如: 每次只能改变一个字母. 变换过程中的中间单词必须在字典中出现. 注意事项 如果没有转换序 ...
- DB2 日志
跟Oracle类似DB2也分为两个模式,日志循环vs归档日志,也就是非归档和归档模式,下面对这两种模式做简单的介绍. 日志循环 日志循环是默认方式,也就是非归档模式,这种模式只支持backup off ...
- HDU 2132 An easy problem
http://acm.hdu.edu.cn/showproblem.php?pid=2132 Problem Description We once did a lot of recursional ...
- Mysql 学习之 SQL的执行顺序
mysql的json查询: 1.一条普通的SQL SELEC ...
- 【转】Base64算法详解
原文链接:https://blog.csdn.net/robertcpp/article/details/51628647 完整的BASE64定义可见RFC 1421和RFC 2045.编码后的数据比 ...
- java垃圾回收 - 为什么要进行垃圾回收
1.为什么要进行垃圾回收: 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象 的内存时,该内存便 ...
- macvtap介绍
macvtap介绍 传统的linux网络虚拟化技术采用的是tap+bridge方式,将虚拟机连接到虚拟的tap网卡,然后将tap网卡加入到bridge.bridge相当于用软件实现的交换机,这种解决方 ...
- 洛谷 U14475 部落冲突 【比赛】 【树链剖分 + 线段树】
题目背景 在一个叫做Travian的世界里,生活着各个大大小小的部落.其中最为强大的是罗马.高卢和日耳曼.他们之间为了争夺资源和土地,进行了无数次的战斗.期间诞生了众多家喻户晓的英雄人物,也留下了许多 ...
- Jenkins远程代码执行漏洞检查(CVE-2017-1000353)
Jenkins的反序列化漏洞,攻击者使用该漏洞可以在被攻击服务器执行任意代码,漏洞利用不需要任何的权限 漏洞影响范围: 所有Jenkins主版本均受到影响(包括<=2.56版本)所有Jenkin ...