洛谷题目链接:[FJOI2016]建筑师

题目描述

小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一个整数。

小 Z 有很严重的强迫症,他不喜欢有两个建筑的高度相同。另外小 Z 觉得如果从最左边(所有建筑都在右边)看能看到 \(A\) 个建筑,从最右边(所有建筑都在左边)看能看到 \(B\) 个建筑,这样的建筑群有着独特的美感。现在,小 Z 想知道满足上述所有条件的建筑方案有多少种?

如果建筑 \(i\) 的左(右)边没有任何建造比它高,则建筑 \(i\) 可以从左(右)边看到。两种方案不同,当且仅当存在某个建筑在两种方案下的高度不同。

输入输出格式

输入格式:

第一行一个整数 \(T\),代表 \(T\) 组数据。 接下来 \(T\) 行,每行三个整数 \(n,A,B\)。

输出格式:

对于每组数据输出一行答案 \(\text{mod } 10^9+7\)。

输入输出样例

输入样例#1:

2

3 2 2

3 1 2

输出样例#1:

2

1

说明

对于 \(10 \%\) 的数据 : \(1 \leq n \leq 10\)。

对于 \(20 \%\) 的数据 : \(1 \leq n \leq 100\)。

对于 \(40 \%\) 的数据 : \(1 \leq n \leq 50000, \ 1 \leq T \leq 5\)。

对于 \(100 \%\) 的数据 :\(1 \leq n \leq 50000, \ 1 \leq A, B \leq 100, \ 1 \leq T \leq 200000\)。

题解:

首先来介绍一下斯特林数

这里只需要用到第一类斯特林数.

其实第一类斯特林数\(S(n, m)\)所代表的意义就是将\(n\)个数分成\(m\)个圆排列的方案数.我们知道\(S(n, m)=S(n-1, m-1)+(n-1)*S(n-1, m)\)可以这样理解,我们分两种情况讨论方案数,如果新加入一个数:

  1. 让它单独组成一个环,方案数为\(S(n-1,m-1)\).
  2. 将它放在之前\(n-1\)个数的左边,方案数为\((n-1)*S(n-1, m)\).

既然了解了斯特林数的含义,那么这里就可以拿来用了.

考虑找到最高的建筑,它一定会将左右两遍分成两个部分,且左边可以看见\(A-1\)个建筑,右边可以看见\(B-1\)个建筑.

那么除去我们挑出来的最高的建筑,还剩下\(n-1\)个建筑,我们需要将这\(n-1\)个建筑分成\(A+B-2\)个建筑群.一个建筑群指的是一栋可以被看见的建筑和在它后面被挡住的建筑.就像下面这张图红色框框内的建筑:

我们知道,建筑群需要让最高的建筑在最边上,这样才能保证这个建筑群内的建筑只有一座被看见,所以,一个建筑群内的排列相当于是一个圆排列(圆排列是经过旋转之后不相同的排列,也就是说圆排列中的任意一个排列都可以通过旋转来让最高的在最边缘).

然后产生了\(A+B-2\)个建筑群之后,我们需要选\(A-1\)个放在最高的建筑的左边,也就是\(C(A+B-2, A-1)\).

所以最后的答案就是\(C(A+B-2, A-1)*S(n-1, A+B-2)\),先预处理一下就可以\(O(1)\)回答了.

记得要开\(long\ long\)

#include<bits/stdc++.h>
using namespace std;
const int N = 5e4+5;
const int NN = 200+5;
const int mod = 1e9+7;
typedef int _int;
#define int long long int T, n, a, b, C[NN][NN], S[N][NN]; _int main(){
cin >> T, C[0][0] = S[0][0] = 1;
for(int i = 1; i <= 200; i++) C[i][i] = C[i][0] = 1;
for(int i = 1; i <= 200; i++)
for(int j = 1; j <= i; j++) C[i][j] = (C[i-1][j]+C[i-1][j-1])%mod;
for(int i = 1; i <= 50000; i++)
for(int j = 1; j <= 200; j++) S[i][j] = (S[i-1][j-1]+(i-1)*S[i-1][j]%mod)%mod;
while(T--){
cin >> n >> a >> b;
cout << C[a+b-2][a-1]*S[n-1][a+b-2]%mod << endl;
}
return 0;
}

[洛谷P4609] [FJOI2016]建筑师的更多相关文章

  1. 洛谷 P4609: [FJOI2016] 建筑师

    本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...

  2. 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】

    题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...

  3. 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)

    题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...

  4. [洛谷4609] [FJOI2016]建筑师

    题目描述 LOJ题面:https://loj.ac/problem/2173. 洛谷题面:https://www.luogu.org/problemnew/show/P4609. Solution [ ...

  5. Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues

    考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...

  6. 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】

    题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...

  7. 洛谷P4587 [FJOI2016]神秘数(主席树)

    题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...

  8. P4609 [FJOI2016]建筑师

    思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...

  9. P4609 [FJOI2016]建筑师(第一类斯特林数)

    传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...

随机推荐

  1. RIGHT-BICEP测试第二次

    1.Right-结果是否正确? 正确 2.B-是否所有的边界条件都是正确的? 正确 3.P-是否满足性能要求? 部分满足 4.是否满足有无括号? 无 5.数字个数是否不超过十? 只是双目运算 6.能否 ...

  2. DataTable转List<T>集合

    #region DataTable转List集合 +static IList<T> DataTableToList<T>(DataTable dt) where T : cla ...

  3. 经典SQL语句基础50题

    很全面的sql语句大全.都是很基础性的,今天特意整理了下.大家互相学习.大家有好的都可以分享出来,  分享也是一种快乐. --创建数据库 create database SQL50 --打开SQL50 ...

  4. MySQL 日志功能详解

    MySQL日志分类 1:查询日志 :query log     2:慢查询日志:slow_query_log 查询执行时长超过指定时长的查询操作所记录日志     3:错误日志:error log   ...

  5. C语言文法阅读与理解序

    <指针>→*  | * < 指针> <直接声明符>  <标识符> | <直接声明>[]| <直接声明>[常量表达式] | < ...

  6. 2nd 词频统计效能测试

    词频统计效能测试 使用性能分析工具分析结果如下 :

  7. 【Nginx】均衡负载权重模式实现session数据同步

    思路:把session存放到一个公共redis服务器上 每次浏览器请求服务端都会带上cookie,因为使用的是权重负载均衡方案,因此nginx反向代理服务器会把请求发放到不同的服务端,服务端用cook ...

  8. 【C】树

    1.子树是不相交的 2.除了根节点,每个节点有且仅有一个父节点 3.一颗n个节点的树有n-1条边 儿子兄弟表示法 满二叉树与完全二叉树 1.满二叉树是除了叶子节点,每一个节点都有两个子节点,并按顺序排 ...

  9. Android自定义XML属性以及遇到的命名空间的问题

    转载请注明出处:http://www.cnblogs.com/kross/p/3458068.html 最近在做一些UI,很蠢很蠢的重复写了很多代码,比如一个自定义的UI Tab,由一个ImageVi ...

  10. delphi 事务处理SQL语句

    方法一(利用adoconnection.exe(sqlstate)): adoconnection1.begintrans;//开始事务try adoconnection1.execute(sqlst ...