HDU 6199 DP 滚动数组
强行卡内存
这题在CF上好像有道极相似的题
可以想到状态设计为dp[f][i][k]表示f在取完i-1时,此时可以取k个或k+1个的状态下的最大值。之前以为n是1e5,自己想不到怎么设计状态真的辣鸡,把题目扔给队友写,实际上n是1e4,k就算不断递增最大也只有200左右,实际上是开的下的。
由于最终局面下的最优决策是固定的,所以从后往前转移。
但是人家说本来题目就too simple了,觉得你这样申请空间还是太naive,会给你MLE。
可以注意到状态i只由i+k+1或i+k转移,k范围是200左右,那么实际上对于一个i只要保存它的临近的k大小的空间就可以完成转移了,也就是滚动数组。
/** @Date : 2017-09-11 17:20:25
* @FileName: HDU 6199 1006 DP.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 2e4+20;
const double eps = 1e-8; int dp[2][243][243];
int sum[N];
int main()
{
int T;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
sum[0] = 0;
for(int i = 1; i <= n; i++)
{
scanf("%d", sum + i);
sum[i] += sum[i - 1];
}
MMF(dp);
for(int i = n; i > 0; i--)//0大
{
for(int k = 220; k > 0; k--)
{
if(i + k <= n)
{
dp[0][i%243][k] = max(dp[1][(i + k)%243][k], dp[1][(i + k + 1)%243][k + 1]+sum[i+k]-sum[i+k-1]);
dp[1][i%243][k] = min(dp[0][(i + k)%243][k], dp[0][(i + k + 1)%243][k + 1]-sum[i+k]+sum[i+k-1]);
}
else if(i + k == n + 1)
{
dp[0][i%243][k] = dp[1][(i + k)%243][k];
dp[1][i%243][k] = dp[0][(i + k)%243][k];
}
if(i + k <= n + 1)
{
dp[0][i%243][k] += (sum[i + k - 1]-sum[i - 1]);
dp[1][i%243][k] -= (sum[i + k - 1]-sum[i - 1]);
} }
//cout << dp[0][i][1] << endl;
}
printf("%d\n", dp[0][1][1]);
}
return 0;
}
HDU 6199 DP 滚动数组的更多相关文章
- hdu 1513(dp+滚动数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 思路:n这么大,可以采用滚动数组,然后就是求原串和反串的LCS了. #include<io ...
- hdu 1024 dp滚动数组
#include <cstdio> #include <iostream> #include <algorithm> #include <queue> ...
- HDU 1024 Max Sum Plus Plus --- dp+滚动数组
HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...
- hdu 3392(滚动数组优化dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3392 Pie Time Limit: 6000/3000 MS (Java/Others) Me ...
- HDU 5119 Happy Matt Friends (背包DP + 滚动数组)
题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...
- POJ 3666 Making the Grade (DP滚动数组)
题意:农夫约翰想修一条尽量平缓的路,路的每一段海拔是A[i],修理后是B[i],花费|A[i] – B[i]|,求最小花费.(数据有问题,代码只是单调递增的情况) #include <stdio ...
- USACO 2009 Open Grazing2 /// DP+滚动数组oj26223
题目大意: 输入n,s:n头牛 s个栅栏 输入n头牛的初始位置 改变他们的位置,满足 1.第一头与最后一头的距离尽量大 2.相邻两头牛之间的距离尽量满足 d=(s-1)/(n-1),偏差不超过1 3. ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
- hdu 4576 (简单dp+滚动数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4576 题意:给出1~n的环,m个操作,每次能顺时针或逆时针走w步,询问最后在l~r这段区间内概率.(1 ...
随机推荐
- Python 变量和常量及数据类型
一.变量的命名 变量由字母.数字和下划线组成.变量的第1个字符必须是字母或下划线. 二.变量的赋值 例: x = 1 三.局部变量 局部变量只能在函数或者代码段内使用. 四.全局变量 在函数之外定义的 ...
- mvc4 找到多个与名为“xx”的控制器匹配的类型
asp.net mvc4 添加分区出现错误 找到多个与名为“home”的控制器匹配的类型 会出现如下错误”找到多个与名为“home”的控制器匹配的类型“ 在RouteConfig文件中添加命名空间可解 ...
- CSS中px和em属性的特点与区别
详解px和em的特点和区别象素px是我们在定义CSS中经常用到的尺寸大小单位,而em在国外网站中经常被使用,px和em之间究竟有什么区别和特点呢?◆px像素(Pixel),相对长度单位.像素px是相对 ...
- java 基础 --集合--013
1, contains()方法底层依赖的是equals()方法,而定义的类中没有equal()方法,所以它会使用父类Object中的equals()方法,而Object的equals()方法比较的是地 ...
- 关于command 'gcc' failed with exit status 1 解决方法
Python踩坑之路 Setup script exited with error: command 'gcc' failed with exit status 1 由于没有正确安装Python开发环 ...
- 转载:java程序调用内存的变化过程
前文知道了java程序运行时在内存中的大概分布,但是对于具体程序是如何运行的,看到一篇文章,直接转载过来. (一)不含静态变量的java程序运行时内存变化过程分析 代码: package oop; / ...
- 【转】实现虚拟机VMware上linux与windows互相复制与粘贴
1.点击虚拟机-->安装vm tool 2.完成后在系统桌面会出现一个tar文件,解压到tmp目录 下 3.终端cd到该文件夹下,执行./vmware-install.pl 一路回车到底.4.重 ...
- [SHOI2011]双倍回文 manacher
题面: 洛谷:[SHOI2011]双倍回文‘ 题解: 首先有一个性质,本质不同的回文串最多O(n)个. 所以我们可以对于每个i,求出以这个i为结尾的最长回文串,然后以此作为长串,并判断把这个长串从中间 ...
- 【BZOJ4455】小星星(动态规划,容斥)
[BZOJ4455]小星星(动态规划,容斥) 题面 BZOJ 洛谷 Uoj 题解 题意说简单点就是给定一张\(n\)个点的图和一棵\(n\)个点的树,现在要让图和树之间的点一一对应,并且如果树上存在一 ...
- BZOJ3451 Tyvj1953 Normal 【期望 + 点分治 + NTT】
题目链接 BZOJ3451 题解 考虑每个点产生的贡献,即为该点在点分树中的深度期望值 由于期望的线性,最后的答案就是每个点贡献之和 对于点对\((i,j)\),考虑\(j\)成为\(i\)祖先的概率 ...