OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification)。OpenCV2之后的C++接口除了Haar特征以外也可以使用LBP特征。

介绍haar分类器理论知识:

1、http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html(讲的很详细);

2、http://blog.csdn.net/zy1034092330/article/details/48850437(基础理论)

实际使用中原理只要大概懂就行了,如果想深究,可以读读两个链接中的博文。

使用OpenCV中自带的haar分类器识别人脸,其文件在OpenCV安装文件夹如下路径中:

haarcascade_frontalface_alt.xml文件复制到工程根目录下即可。

代码:

#include <opencv2/opencv.hpp>
#include <iostream> using namespace std;
using namespace cv; //String my_face_cascade_name = "my_haarcasade_face.xml";
String face_cascade_name = "haarcascade_frontalface_alt.xml";
CascadeClassifier face_cascade;
String window_name = "Capture - face detection"; void detectFace(Mat frame); int main()
{
VideoCapture capture;
Mat frame; //检测是否成功读取人脸的haar分类器,就是那个xml文件
if (!face_cascade.load(my_face_cascade_name))
{
cout << "Error: cannot load face casade!!!" << endl;
return -1;
} capture.open(0);//打开摄像头
//检测摄像头是否成功打开
if (!capture.isOpened())
{
cout << "Error: cannot open the camera!!!" << endl;
return -1;
} namedWindow(window_name);//创建窗口 while (true)
{
capture >> frame; //从摄像头读入一帧图像 detectFace(frame);//对那帧图像进行处理,识别人脸 //等待按键,若按下esc键,则退出循环
int c = waitKey(10);
if (c == 0x1B)
break;
} return 0;
} //从输入图像中检测人脸
void detectFace(Mat frame)
{
Mat frame_gray;
vector<Rect> face; cvtColor(frame, frame_gray, COLOR_BGR2GRAY);//转成灰度图像
equalizeHist(frame_gray, frame_gray);//直方图均衡化 //按照文档说明调用函数即可
face_cascade.detectMultiScale(frame_gray, face, 1.1, 2, CASCADE_SCALE_IMAGE, Size(30, 30)); //遍历所有人脸
for (size_t i = 0; i < face.size(); i++)
{
//根据返回的Rect的x坐标、y坐标、宽width和高height算出中心位置
Point center(face[i].x + face[i].width/2, face[i].y + face[i].height/2);
//调用ellipse画出椭圆型边框,指示人脸
ellipse(frame, center, Size(face[i].width/2, face[i].height/2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0); } //最后刷新窗口,显示图像
imshow(window_name, frame);
}

程序中已经有相关注释,不做赘述。只要环境配置正确,OpenCV2下运行应该不会有错。

简要总结一下CascadeClassifier::detectMultiScale函数的用法:

从文档中摘出来的三种c++下的定义方式:

CascadeClassifier::detectMultiScale

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

C++: void CascadeClassifier::detectMultiScale(InputArray image, vector& objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())

C++: void CascadeClassifier::detectMultiScale(InputArray image, vector& objects, vector& numDetections, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())

C++: void CascadeClassifier::detectMultiScale(InputArray image, std::vector& objects, std::vector& rejectLevels, std::vector& levelWeights, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size(), bool outputRejectLevels=false )

只讨论下面这种形式:

C++: void CascadeClassifier::detectMultiScale(InputArray image,

vector& objects, double scaleFactor=1.1, int minNeighbors=3, int

flags=0, Size minSize=Size(), Size maxSize=Size())

参数说明:

1、InputArray image:

输入图像,填Mat类型的图像即可。图像通道数可以是任意的,但图像深度应为CV_8U、CV_16U、CV_16S、CV_32F、CV_64F;

2、std::vector& objects:

为被检测物体的矩形向量组,这里就代表人脸所在范围的矩形向量组;

3、double scaleFactor=1.1:

scaleFactor为图像中的尺度参数,默认取值1.1;

4、int minNeighbors=3:

每一个级联矩形应该保留的邻近个数的最小值,默认为3;

5、int flags=0:

在老版本的OpenCV中,与cvHaarDetectObjects中的这个参数具有相同的含义,新版本中没用,默认取0;

6、Size minSize=Size():

物体的最小大小,指定其大小的最小值,所有小于此的都被忽视掉;

7、Size maxSize=Size():

物体的最大大小,指定其大小的最大值,所有大于此的都被忽视掉;

OpenCV学习记录(一):使用haar分类器进行人脸识别 标签: opencv脸部识别c++ 2017-07-03 15:59 26人阅读的更多相关文章

  1. OpenCV学习记录(二):自己训练haar特征的adaboost分类器进行人脸识别 标签: 脸部识别opencv 2017-07-03 21:38 26人阅读

    上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开). 这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了.不过效果并不是特别理想,由于我是在自己的 ...

  2. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

  3. opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH

    一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...

  4. 利用opencv中的级联分类器进行人脸检測-opencv学习(1)

    OpenCV支持的目标检測的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification).注意,新版本号的C++接口除了Haar特征以外 ...

  5. OpenCV学习笔记(一)安装及运行第一个OpenCV程序

    1.下载及安装 OpenCV是一套开源免费的图形库,主要有C/C++语言编写,官网: http://opencv.org/ .在 http://opencv.org/downloads.html 可以 ...

  6. Opencv级联分类器实现人脸识别

    在本章中,我们将学习如何使用OpenCV使用系统相机捕获帧.org.opencv.videoio包的VideoCapture类包含使用相机捕获视频的类和方法.让我们一步一步学习如何捕捉帧 - 第1步: ...

  7. AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图

    原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...

  8. opencv学习记录

    #include<iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui ...

  9. OpenCV学习记录之摄像头调用

    关于opencv调用摄像头的问题主要是因为摄像头的打开有延时.在显示图像前,要用if语句判断图像是否存在.(否则会报错) 具体的:教程里的源程序,将if条件句里,break去掉,并增加else语句. ...

随机推荐

  1. String与StringBuffer效率的比较

    String str = “”; for (int i=0; i<100; i++) str += “a”; 可是你知道在内存中会产生多少的垃圾出来吗?总共会有a.aa.aaa. aaa….,无 ...

  2. bc显示小数点前的0

    bc是强大而常用的计算工具.不过在除法运算时,如果得到的结果值小于1,得到的小数前面的0不存.本篇提供几个常用小数点前缺0的解决方法. [root@maqing ~]# bc bc Copyright ...

  3. yii 获取当前ip

    <?php //当前域名 echo Yii::app()->request->hostInfo; //除域名外的URL echo Yii::app()->request-> ...

  4. [Web]网址净化方法

    本文来自:https://meta.appinn.com/t/topic/3130 原理很简单,所以不说了. 用法很简单,先把下面的代码保存为书签(复制到地址里面),在需要的页面里点击一下这个书签就好 ...

  5. node 中的定时器, nextTick()和setImmediate()的使用

    1.node中使用定时器的问题在于,它并非精确的.譬如setTimeout()设定一个任务在10ms后执行,但是在9ms后,有一个任务占用了5ms,再次轮到定时器时,已经耽误了4ms. 好了node中 ...

  6. 为什么多线程读写 shared_ptr 要加锁?

    https://www.cnblogs.com/Solstice/archive/2013/01/28/2879366.html 为什么多线程读写 shared_ptr 要加锁? 陈硕(giantch ...

  7. TCP 三次握手 四次握手

    http://blog.chinaunix.net/uid-22312037-id-3575121.html http://www.centos.bz/2012/08/tcp-establish-cl ...

  8. find命令中的print0和xargs -0

    看到命令find . -name checkout-cache -f -- 不明白其中-print0和 xargs -0的用法.查了一下,转载一篇备忘. xargs命令的作用是将参数列表转换成小块分段 ...

  9. svn ignore 的用法(忽略文件及目录)

    svn ignore 的用法(忽略文件及目录) 若想创建了一个文件夹,并且把它加入版本控制,但忽略文件夹中的所有文件的内容: $ svn mkdir spool $ svn propset svn:i ...

  10. 二、jenkins配置email(以腾讯企业qq为例)

    废话不多说,直接上干货: 主要针对两个部分进行介绍: 1.jenkins内置的邮件功能: 2.Editable Email Notification插件的邮件功能: 低版本的jenkins有很多插件都 ...