1.队列的使用:
  队列引用的前提: 多个进程对同一块共享数据的修改:要从硬盘读文件,慢,还要考虑上锁:
   所以就出现了 队列 和 管道 都在内存中(快); 队列 = 管道 + 上锁   用队列的目的:
  进程间通信(IPC),队列可以放任意类型的数据,应该放小东西,
  q = Queue(3)
  get put full empty   队列作用:
   多个进程之间通信使用的,一个进程将数据放到队列里面,另外一个进程从队列里面取走数据,干的是进程之间通信的活
 from multiprocessing import Queue

 q = Queue(3)
q.put('hello')
q.put({'a':1})
q.put([3,3,3]) print(q.full()) # 查看队列是否满了
# q.put(2) # 这里会卡住,直到队列中被取走一个 print(q.get())
print(q.get())
q.put(2)
print(q.get())
print(q.get())
print(q.empty()) # 查看队列是否为空
print(q.get()) # 取完数据后,再取,就卡住了
2.生产者消费者模型:
  生产者:
   生产者指的是生产数据的任务
  消费者:
   消费者指的是处理数据的任务   生产者与消费者模型:
   生产者与消费者之间引入一个容器(队列):
  生产者《---》队列《---》消费者   好处:程序解开耦合,生产者与消费者不直接通信
   平衡了生产者与消费者的速度差    生产者:一个进程
  消费者:一个进程
  进程间通信:队列(IPC)   如果生产者,消费者,队列组件都在一台机器上:
   集中式:稳定性差,性能问题差   分布在多台机器上:
   Rabbitmq 用它来实现生产者,消费者模型
 from multiprocessing import Process,Queue
import time def producer(q):
for i in range(10):
res = '包子%s'%i
time.sleep(0.5)
print('生产者生产了%s'%res) q.put(res) def consumer(q):
while True:
res = q.get()
if not res:break
time.sleep(1)
print('消费者吃了%s'%res) if __name__ == "__main__":
# 容器
q = Queue() # 生产者们
p1 = Process(target=producer,args=(q,))
p2 = Process(target=producer, args=(q,))
p3 = Process(target=producer, args=(q,)) # 消费者们
c1 = Process(target=consumer,args=(q,))
c2 = Process(target=consumer,args=(q,)) p1.start()
p2.start()
p3.start()
c1.start()
c2.start() p1.join()
p2.join()
p3.join()
q.put(None) # 两个消费者,所以放两个None
q.put(None) print('主')
3.JoinableQueue:
q = JoinableQueue()
q.join()
q.task_done()
 from multiprocessing import Process,Queue,JoinableQueue
import time def producer(q):
for i in range(2):
res = '包子%s'%i
time.sleep(0.5)
print('生产者生产了%s'%res) q.put(res)
q.join() # 等待队列为空 def consumer(q):
while True:
res = q.get()
if not res:break
time.sleep(1)
print('消费者吃了%s'%res)
q.task_done() # 消费者发信号,任务结束 if __name__ == "__main__":
# 容器
q = JoinableQueue() # 生产者们
p1 = Process(target=producer,args=(q,))
p2 = Process(target=producer, args=(q,))
p3 = Process(target=producer, args=(q,)) # 消费者们
c1 = Process(target=consumer,args=(q,))
c2 = Process(target=consumer,args=(q,))
c1.daemon = True # 消费者没有存在的必要,设为守护进程
c2.daemon = True p1.start()
p2.start()
p3.start()
c1.start()
c2.start() p1.join()
p2.join()
p3.join() print('主')
												

并发编程 - 进程 - 1.队列的使用/2.生产者消费者模型/3.JoinableQueue的更多相关文章

  1. python并发编程之多进程(二):互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型

    一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终 ...

  2. python开发进程:互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型

    一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终 ...

  3. 进程部分(IPC机制及生产者消费者模型)和线程部分

    进程部分 一:进程间通信IPC机制:由于进程之间的内存空间是相互隔离的,所以为了进程间的通信需要一个共享的内存空间, 但是共享带来的问题是数据在写的时候就不安全了,所以需要一种机制既有能共享的内存 空 ...

  4. python并发编程-进程池线程池-协程-I/O模型-04

    目录 进程池线程池的使用***** 进程池/线程池的创建和提交回调 验证复用池子里的线程或进程 异步回调机制 通过闭包给回调函数添加额外参数(扩展) 协程*** 概念回顾(协程这里再理一下) 如何实现 ...

  5. 4、网络并发编程--僵尸进程、孤儿进程、守护进程、互斥锁、消息队列、IPC机制、生产者消费者模型、线程理论与实操

    昨日内容回顾 操作系统发展史 1.穿孔卡片 CPU利用率极低 2.联机批处理系统 CPU效率有所提升 3.脱机批处理系统 CPU效率极大提升(现代计算机雏形) 多道技术(单核CPU) 串行:多个任务依 ...

  6. Learning-Python【34】:进程之生产者消费者模型

    一.什么是生产者消费者模型 生产者指的是生产数据的任务,消费者指的是处理数据的任务,在并发编程中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据.同样 ...

  7. 守护进程,进程安全,IPC进程间通讯,生产者消费者模型

    1.守护进程(了解)2.进程安全(*****) 互斥锁 抢票案例3.IPC进程间通讯 manager queue(*****)4.生产者消费者模型 守护进程 指的也是一个进程,可以守护着另一个进程 一 ...

  8. Day034--Python--锁, 信号量, 事件, 队列, 生产者消费者模型, joinableQueue

    进程同步: 1. 锁 (重点)    锁通常被用来实现对共享资源的同步访问.为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁, ...

  9. 利用multiprocessing.managers开发跨进程生产者消费者模型

    研究了下multiprocessing.managers,略有收获,随笔一篇: 核心思路是构造一个manager进程,这个进程可以通过unix socket或tcp socket与其它进程通信:因为利 ...

随机推荐

  1. java学习之实例变量初始化

    实例变量的初始化方法 第一种:通过构造函数进行初始化. 第二种:通过声明实例字段初始化. 第三种:通过对象代码块初始化. 通过构造函数进行初始化方法 通过构造函数进行对象初始化,必须在类中声明一个带参 ...

  2. private继承的作用

    这里有个demo,里面的Stack<T*> : private Stack<void *>,作者对此的解释如下 The partial specialization for o ...

  3. 利用eclipse的search功能搜索当前项目的源文件

    当你项目的源文件太多,文件组织结构太复杂的的时候,有时候希望google来帮你一把?给个关键字就把相关的搜索结果给出来? eclipse的search功能基本上就可以完成这个任务,文件搜索,甚至JAV ...

  4. ios界面跳转

    import Foundationimport UIKit class MyViewController: UIViewController{ // var window: UIWindow? ove ...

  5. 怎样实时判断socket连接状态?

    对端正常close socket,或者进程退出(正常退出或崩溃),对端系统正常关闭 这种情况下,协议栈会走正常的关闭状态转移,使用epoll的话,一般要判断如下几个情况 处理可读事件时,在循环read ...

  6. 树莓派teamviewer远程 windows远程桌面

    https://mirror.tuna.tsinghua.edu.cn/help/raspbian/ 用这个源后,再安装 apt-get update https://download.teamvie ...

  7. Dubbo (开源分布式服务框架)

    Provider 暴露服务方称之为“服务提供者”. Consumer 调用远程服务方称之为“服务消费者”. Registry 服务注册与发现的中心目录服务称之为“服务注册中心”. Monitor 统计 ...

  8. Spring Cloud是一系列框架的有序集合

    Spring Cloud是一系列框架的有序集合.它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册.配置中心.消息总线.负载均衡.断路器.数据监控等,都可以用 ...

  9. UML概述

    UML (Unified Modeling Language)统一建模语言,是描述.构造和文档化系统制品的可视化语言,是一种图形表示法. UML用途:UML是一种工具,主要用在我们对软件用面向对象的方 ...

  10. HTML的footer置于页面最底部的方法

    方法一:footer高度固定+绝对定位 <html> <head> <style type="text/css"> html{height:%; ...