Luogu5242

通过观察数据,我们可以发现,右端点的取值是单调递增的。于是,我们可以极限一波,用一个双指针法,类似于队列。

右端点的取值满足以下公式:

(1-p1)(1-p2)..(1-pn) * (p1/(1-p1) + p2/(1-p2) + ... + pn/(1-pn))

记录两个变量,表示和和积即可。

tmp1为积,tmp2为和

当任何一个 p 大于 0.5 的时候,选择一段的答案不比选择这一个的答案大。因此直接特判这种情况。

常规化式子

#include<bits/stdc++.h>
using namespace std;
typedef long double llf;
int n;
llf p[1000001],ans=0,tmp1=1,tmp2;//tmp1一定要赋值为1,如果是0的话大家都知道下场
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) {
cin>>p[i];
p[i]/=1e6;
ans=max(ans,p[i]);
}
int j=1;
for(int i=1;i<=n;i++) {
while(j<=n&&tmp1*tmp2<tmp1*(1-p[j])*(tmp2+p[j]/(1-p[j]))){//根据公式判断
tmp1*=(1-p[j]);
tmp2+=p[j]/(1-p[j]);//更新两个变量
j++;
}
ans=max(ans,tmp1*tmp2);//更新答案
tmp1/=(1-p[i]);
tmp2-=p[i]/(1-p[i]);
}
printf("%d",(int) (1e6*ans));
return 0;
}

[USACO19FEB]Cow Dating的更多相关文章

  1. P5242 [USACO19FEB]Cow Dating

    题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...

  2. [USACO19FEB]Cow Dating——找规律

    原题戳这里 题解 显然原题等价于让我们求这个式子\(\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)的最大值是 ...

  3. 洛谷 P5242 [USACO19FEB]Cow Dating P

    这道题很有意思. 不难发现,对于一个区间 \([l, r]\),恰好只有一个奶牛接受邀请的概率为 \[\prod_{i=l}^r(1-p_i) \cdot \sum_{i=l}^r \frac {p_ ...

  4. 题解 P6098 【[USACO19FEB]Cow Land G】

    震惊,蒟蒻学树剖第二天就打题解 所以说,理解之后树剖这种东西其实难度真心不大.至少这种模板题都可以秒切的 这里推荐一个博客: 树剖详解 蒟蒻就是在这个博客上学到的 如果想看我自己写的总结,请点 我的博 ...

  5. 树链剖分详解&题解 P6098 【[USACO19FEB]Cow Land G】

    看到各位大佬们已经把其他的东西讲的很明白了,我这个 juruo 就讲一讲最基本的树链剖分吧. 0.树剖是什么?能吃吗? 不能吃 树剖是树链剖分的简称,我们一般说的树剖其实指重链剖分.当然,还有一种长链 ...

  6. P5541 [USACO19FEB]Sleepy Cow Herding

    ri,被黄题虐. 思路:贪心?? 提交:2次 错因:没有特判 题解: 先排序. 最小代价:固定区间长度为\(n\),我们扫一遍数组看区间最多包含几个数,设为 \(mx\) ,答案就是\(n-mx+1\ ...

  7. POJ 3278 Catch That Cow(bfs)

    传送门 Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 80273   Accepted: 25 ...

  8. 【BZOJ1623】 [Usaco2008 Open]Cow Cars 奶牛飞车 贪心

    SB贪心,一开始还想着用二分,看了眼黄学长的blog,发现自己SB了... 最小道路=已选取的奶牛/道路总数. #include <iostream> #include <cstdi ...

  9. HDU Cow Sorting (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2838 Cow Sorting Problem Description Sherlock's N (1  ...

随机推荐

  1. LIS和LCS LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  2. Python 日期和时间戳的转换

    Python 日期和时间戳的转换 1. Python中处理时间的模块 Python中处理时间的模块有time.datetime和calendar. 在Python中表示时间的方式: 时间戳:10位整数 ...

  3. ACM暑假培训宣讲稿

    (鞠躬)感谢大家的掌声! 我上台来作这次的宣讲,首先要感谢大家的捧场(当然,这是一句玩笑话),其实吧,我要感谢一下我们ACM班老大(班长),hjh队友,是他指派我来的,给了我这个宝贵的机会.最要感谢的 ...

  4. getparameter()和getattribution()的区别的 java详细

    两个Web组件之间为转发关系时,转发源会将要共享 request范围内的数据先用setAttribute将数据放入到HttpServletRequest对象中,然后转发目标通过 getAttribut ...

  5. 将windows上面的项目拷贝到Linux环境下报错不能够找到对应的表com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Table 'puyang.ServiceType' doesn't exist

    将一模一样的项目从win迁移到到linux上报错: 一开始还是以为是linux不能识别hql语句,查找资料发现是因为Liunx服务器上mysql是区分大小写的,而本地是不区分的如:代码是这样写的 @E ...

  6. python nose的html报告优化

    用的是nose的nose-html-reporting (0.2.3)插件生成报告.用了bootstrap前端框架,加入了开始时间和计算持续时间,及其本地化. 优化后的显示效果: 代码地址

  7. osg反走样

    osg::ref_ptr<osg::GraphicsContext::Traits> traits = new osg::GraphicsContext::Traits; traits-& ...

  8. (4)WePHP 模板引入CSS js

    模板有两个定义了两个常量 父类已经定义好了 //模板常量 $dirStr=dirname($_SERVER['SCRIPT_NAME']); $dirStr=$dirStr=='\\'?NULL:$d ...

  9. javascript总结44: DOM对象的dataset属性方式

    1 DOM设置属性的特殊方式: DOM对象的dataset属性方式获取data-xxx方式定义的属性 由于我们经常需要在标签上自定义属性来存储数据或状态,但是如果用传统的方式操作起来比较繁琐,而且不熟 ...

  10. PatternLayoutEncoder 输出格式

    ch.qos.logback.classic.encoder.PatternLayoutEncoder ch.qos.logback.classic.PatternLayout ch.qos.logb ...