MACD 的数学解释
MACD 的数学解释
MACD 的一般定义
DIF &= EMA(P, w_{fast}) - EMA(P,w_{slow}) \\
DEM &= EMA(DIF, w_{signal}) \\
BAR &= 2 \times (DIF - DEM)
\end{align*}
\]
引入延迟算子
将 \(w\) 定义为 \(EMA\) 的衰减系数,即
\]
将 \(L\) 定义为“延迟算子”,公式重写成:
\]
进而推导出:
DIF_t &= \left( \frac{1-w_{fast}}{1-w_{fast}L} - \frac{1-w_{slow}}{1-w_{slow}L} \right) P_t \\
DEM_t &= \frac{1-w_{signal}}{1-w_{signal}L} P_t \\
BAR_t &= 2\cdot DIF_t \frac{w_{signal}(1-L)}{1-w_{signal}L} \\
&= 2 \cdot \frac{w_{signal}(1-L)}{1-w_{signal}L} \cdot \frac{(w_{slow} - w_{fast})(1-L)}{(1-w_{slow}L)(1-w_{fast}L)} P_t
\end{align*}
\]
下面解析 \(BAR_t\) 的计算中,历史数据的权重。
Taylor 展开
采用最通常的参数配置 \(MACD(12,26,9)\),即
w_{fast} &= (12-1) / (12+1) = 11/13 \\
w_{slow} &= (26-1) / (26+1) = 25/27 \\
w_{signal} &= (9-1) / (9+1) = 8/10 = 4/5
\end{align*}
\]
要得到历史数据在公式中的权重,必须对分数形式算子做 Taylor 展开,得到多项式级数的表达形式。将上述参数代入到公式中:
\]
在网站 WolframAlpha 上找到 Taylor 展开,输入上述公式
taylor series 2*(4/5*(1-x))/(1-4/5*x) * ((25/27 - 11/13)*(1-x))/((1-25/27*x)*(1-11/13*x))
得到 Taylor 展开的解析形式:
\frac{32\left(819(\frac{4}{5})^n - 765(\frac{11}{13})^n + 65(\frac{25}{27})^n \right)}{29835} L^n
\]
所以,历史数据 \(P_{t-n}\) 的权重是:
\]
权重分析
画出前 50 个历史数据的权重

整体来看,权重的分布为三段:
- 近期的数据赋予正的权重,但迅速衰减
- 中期的数据赋予负的权重,绝对值先增后减
- 远期的数据权重几乎为 0
\(MACD\) 中的 \(BAR\) 基本上可以看作是近期数据与中期数据的差。
共振?
如图,采用最通常的参数配置 \(MACD(12,26,9)\),最大权重出现在 \(n=0\) 时,最小权重出现在 \(n=8\) 时。如果价格序列体现出“波浪”的形态,一个波谷到邻近波峰之间索引的差值等于 \(8-0\),按照上述权重的分布,基本上可以断定这时的 \(BAR\) 同时达到了最大值,因为我们为波分和波谷分别赋予了最大和最小的权重。也就是说,价格序列波浪的长度大致等于最大最小权重对应索引的差时,价格序列和 \(BAR\) 将出现“共振”。
MACD 的数学解释的更多相关文章
- FFT&NTT数学解释
FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...
- github 专案介绍 – Python 范例:透过互动式的 Jupyter 和数学解释流行的机器学习演算法
对于机器学习有兴趣,不少人应该会先从 Andrew Ng ( 吴恩达 ) 的机器学习课程开始,但是吴恩达的课程是使用 octave 这个工具当作练习.这个 github 项目包含使用 Python 实 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- 奇异值分解 SVD 的数学解释
奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法.除此之外,矩阵分解还有很多方法,例如特征分解(Eigen ...
- lasso数学解释
lasso:是L1正则化(绝对值) 注:坐标下降法即前向逐步线性回归 lasso算法:常用于特征选择 最小角算法,由于时间有限没有去好好研究(其实是有点复杂,尴尬)
- OpenGL坐标变换及其数学原理,两种摄像机交互模型(附源程序)
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle: ...
- Chrome V8引擎系列随笔 (1):Math.Random()函数概览
先让大家来看一幅图,这幅图是V8引擎4.7版本和4.9版本Math.Random()函数的值的分布图,我可以这么理解 .从下图中,也许你会认为这是个二维码?其实这幅图告诉我们一个道理,第二张图的点的分 ...
- TF-IDF提取行业关键词
1. TF-IDF简介 TF-IDF(Term Frequency/Inverse Document Frequency)是信息检索领域非常重要的搜索词重要性度量:用以衡量一个关键词\(w\)对于查询 ...
随机推荐
- javascript的constructor属性
/* constructor 属性 constructor 属性返回所有 JavaScript 变量的构造函数. */console.log("John".constructor) ...
- OpenGL坐标变换专题
OpenGL坐标变换专题(转) OpenGL通过相机模拟.可以实现计算机图形学中最基本的三维变换,即几何变换.投影变换.裁剪变换.视口变换等,同时,OpenGL还实现了矩阵堆栈等.理解掌握了有关坐 ...
- spark reduceByKey
reduce(binary_function) reduce将RDD中元素前两个传给输入函数,产生一个新的return值,新产生的return值与RDD中下一个元素(第三个元素)组成两个元素,再被传给 ...
- [Excel]鼠标右键菜单没有新建Word、Excel、PPT怎么办?
很多朋友在安装好Office(2010或2013等)之后,发现右键新建中没有Word.Excel.PowerPoint等项,但是自己的Office却明明安装好了.这个时候该怎么办呢?这里,本文为大家提 ...
- PBOC中文件结构,文件类型解析
1.明确两个规范,a. ISO7816 b.EMV规范/PBOC规范,二者的区别,7816是ISO制定的,是国际规范,而EMV规范是卡组织制定的,是遵循ISO7816规范的,PBOC是抄袭EMV规 ...
- Creating Custom UITableViewCells with NIB files
Maksim Pecherskiy 13 November 2012 Well this sucks. Apparently these days you can only use the Inter ...
- Matlab图像处理教程
虽然典型算法的开发是基于理论支持的,但这些算法的实现几乎总是要求参数估计,并常常进行算法修正与候选求解方案的比较. MATLAB由LINPACK和EISPACK项目开发,最初用于矩阵处理.今天,MAT ...
- 关于Qt官方下载页的最新变动
时间过得很快,现在Qt已经迎来了5.10版本,但是当我们去下载页下载对应安装包的时候,已经找不到之前的offline安装包了.你能够看到的只有在线安装包,并且我自己有做过测试,国内的网络基本上没有机会 ...
- springDao的jdbctemplate
pom文件 <?xml version="1.0" encoding="UTF-8"?><project xmlns="http:/ ...
- VC中CRect类的简单介绍
CRect CRect类与Windows RECT结构相似,并且还包括操作CRect对象和Windows RECT结构的成员函数.在传递LPRECT,LPCRECT或RECT结构作为参数的任何地方,都 ...