MACD 的数学解释
MACD 的数学解释
MACD 的一般定义
DIF &= EMA(P, w_{fast}) - EMA(P,w_{slow}) \\
DEM &= EMA(DIF, w_{signal}) \\
BAR &= 2 \times (DIF - DEM)
\end{align*}
\]
引入延迟算子
将 \(w\) 定义为 \(EMA\) 的衰减系数,即
\]
将 \(L\) 定义为“延迟算子”,公式重写成:
\]
进而推导出:
DIF_t &= \left( \frac{1-w_{fast}}{1-w_{fast}L} - \frac{1-w_{slow}}{1-w_{slow}L} \right) P_t \\
DEM_t &= \frac{1-w_{signal}}{1-w_{signal}L} P_t \\
BAR_t &= 2\cdot DIF_t \frac{w_{signal}(1-L)}{1-w_{signal}L} \\
&= 2 \cdot \frac{w_{signal}(1-L)}{1-w_{signal}L} \cdot \frac{(w_{slow} - w_{fast})(1-L)}{(1-w_{slow}L)(1-w_{fast}L)} P_t
\end{align*}
\]
下面解析 \(BAR_t\) 的计算中,历史数据的权重。
Taylor 展开
采用最通常的参数配置 \(MACD(12,26,9)\),即
w_{fast} &= (12-1) / (12+1) = 11/13 \\
w_{slow} &= (26-1) / (26+1) = 25/27 \\
w_{signal} &= (9-1) / (9+1) = 8/10 = 4/5
\end{align*}
\]
要得到历史数据在公式中的权重,必须对分数形式算子做 Taylor 展开,得到多项式级数的表达形式。将上述参数代入到公式中:
\]
在网站 WolframAlpha 上找到 Taylor 展开,输入上述公式
taylor series 2*(4/5*(1-x))/(1-4/5*x) * ((25/27 - 11/13)*(1-x))/((1-25/27*x)*(1-11/13*x))
得到 Taylor 展开的解析形式:
\frac{32\left(819(\frac{4}{5})^n - 765(\frac{11}{13})^n + 65(\frac{25}{27})^n \right)}{29835} L^n
\]
所以,历史数据 \(P_{t-n}\) 的权重是:
\]
权重分析
画出前 50 个历史数据的权重
整体来看,权重的分布为三段:
- 近期的数据赋予正的权重,但迅速衰减
- 中期的数据赋予负的权重,绝对值先增后减
- 远期的数据权重几乎为 0
\(MACD\) 中的 \(BAR\) 基本上可以看作是近期数据与中期数据的差。
共振?
如图,采用最通常的参数配置 \(MACD(12,26,9)\),最大权重出现在 \(n=0\) 时,最小权重出现在 \(n=8\) 时。如果价格序列体现出“波浪”的形态,一个波谷到邻近波峰之间索引的差值等于 \(8-0\),按照上述权重的分布,基本上可以断定这时的 \(BAR\) 同时达到了最大值,因为我们为波分和波谷分别赋予了最大和最小的权重。也就是说,价格序列波浪的长度大致等于最大最小权重对应索引的差时,价格序列和 \(BAR\) 将出现“共振”。
MACD 的数学解释的更多相关文章
- FFT&NTT数学解释
FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...
- github 专案介绍 – Python 范例:透过互动式的 Jupyter 和数学解释流行的机器学习演算法
对于机器学习有兴趣,不少人应该会先从 Andrew Ng ( 吴恩达 ) 的机器学习课程开始,但是吴恩达的课程是使用 octave 这个工具当作练习.这个 github 项目包含使用 Python 实 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- 奇异值分解 SVD 的数学解释
奇异值分解(Singular Value Decomposition,SVD)是一种矩阵分解(Matrix Decomposition)的方法.除此之外,矩阵分解还有很多方法,例如特征分解(Eigen ...
- lasso数学解释
lasso:是L1正则化(绝对值) 注:坐标下降法即前向逐步线性回归 lasso算法:常用于特征选择 最小角算法,由于时间有限没有去好好研究(其实是有点复杂,尴尬)
- OpenGL坐标变换及其数学原理,两种摄像机交互模型(附源程序)
实验平台:win7,VS2010 先上结果截图(文章最后下载程序,解压后直接运行BIN文件夹下的EXE程序): a.鼠标拖拽旋转物体,类似于OGRE中的“OgreBites::CameraStyle: ...
- Chrome V8引擎系列随笔 (1):Math.Random()函数概览
先让大家来看一幅图,这幅图是V8引擎4.7版本和4.9版本Math.Random()函数的值的分布图,我可以这么理解 .从下图中,也许你会认为这是个二维码?其实这幅图告诉我们一个道理,第二张图的点的分 ...
- TF-IDF提取行业关键词
1. TF-IDF简介 TF-IDF(Term Frequency/Inverse Document Frequency)是信息检索领域非常重要的搜索词重要性度量:用以衡量一个关键词\(w\)对于查询 ...
随机推荐
- [C++] * Basic and Class
C++ 目 录 1 开始学习C++ 4 1.1 C++的头文件 4 1.2 命名空间 4 1.3 更严格的类型转化 4 1.4 new和delete 4 1.5 内联函数 4 1.6 引用 5 1. ...
- python3--多目录之间的协作的一些必备知识
# Auther: Aaron Fan # 动态获取执行文件的相对路径路径:print(__file__) #动态获取执行文件的绝对路径:import osfile_path = os.path.ab ...
- 为什么丑陋的UI界面却能创造良好的用户体验?
本文内容由Mockplus团队翻译. 官网:http://www.mockplus.cn 网站界面过于漂亮可能会影响网站的可用性,但本文中提到的5个网站界面可谓是“丑”出了新高度.这样的网站它还有可用 ...
- thinkpad t480s重装win10后小红点失灵 无法启用
问题描述: thinkpad t480s重装win10纯净版系统后,小红点失效,控制面板中Track Point设置页面被禁用. 解决方法: 可打开下述网址,下载并安装TrackPoint Firmw ...
- 44个javascript 变态题解析
原题来自: javascript-puzzlers 读者可以先去做一下感受感受. 当初笔者的成绩是 21/44… 当初笔者做这套题的时候不仅怀疑智商, 连人生都开始怀疑了…. 不过, 对于基础知识的理 ...
- Selenium运用-漫画批量下载
今天我们要爬去的网站是http://comic.sfacg.com/.漫画网站一般都是通过JavaScript和AJAX来动态加载漫画的,这也就意味着想通过原来爬取静态网站的方式去下载漫画是不可能的, ...
- jenkins+maven+svn实现简单的一键发布
前言 在安装之前,我想说明一下本文的目的,jenkins的一款持续集成工具, 它可以做的事情很多,其中一个主要的功能就是简化部署流程 回想一下我们的发布流程: ...
- spring mvc 集成hibernate步骤
今天从头把hibernate集成进入springMVC框架中,把过程记录下来. 1.首先要在监听器配置文件中加入hibernate支持,如下: <?xml version="1.0&q ...
- Qt编译,imp_CommandLineToArgvW@8问题
Tested msvc2013. The linker can not find _imp_CommandLineToArgvW@8. It's in shell32.lib. I see qtmai ...
- 用word2013发布csdn博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...