[BZOJ5306][HAOI2018]染色
Description
给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色。如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\)的收益。
求所有染色方案的收益之和膜\(1004535809\).
sol
整行公式太大了放不下就只能用行内公式了qaq
首先设\(N=\min(m,\lfloor\frac ns\rfloor)\),这是出现了\(S\)次的颜色种数的上界。
设\(F(i)\)表示染色后出现了\(S\)次的颜色有\(i\)中的染色方案数,那么答案就是:
\(Ans=\sum_{i=0}^{N}w_i*F(i)\)
考虑一个对\(F(i)\)的容斥。
\(F(i)=\frac{m!}{i!(m-i)!}\frac{n!}{(S!)^i(n-iS)!}\sum_{j=i}^{N}(-1)^{j-i}\frac{(m-i)!}{(j-i)!(m-j)!}\frac{(n-iS)!}{(S!)^{j-i}(n-jS)!}(m-j)^{n-jS}\)
解释一下:
\(\frac{m!}{i!(m-i)!}\)是从\(m\)中颜色里面选出\(i\)种。
\(\frac{n!}{(S!)^i(n-iS)!}\)是从\(n\)个位置中选出\(iS\)个然后再进行可重排列,也可以理解为在\(n\)个里面选出\(S\)个,再在\(n-S\)个里面选出\(S\)个,在\(n-2S\)个里面选出\(S\)个。。。乘起来就是这个。
接下来就是在剩下的\(m-i\)中颜色中,在\(n-iS\)个位置上随便填,但是随便填的时候可能还会出现某种颜色出现了\(S\)次,所以需要容斥。
\(j\)表示实际上出现了\(S\)次的颜色有\(j\)种,那么就还需要在\(m-i\)中颜色中选出\(j-i\)种,在\(n-iS\)个位置中选出\((j-i)S\)个进行可重排列,然后剩下的随便填,随便填的方案数是\((m-j)^{n-jS}\)。
式子应该不难理解,接下来就是化简了。
\(F(i)=\frac{m!}{i!(m-i)!}\frac{n!}{(S!)^i(n-iS)!}\sum_{j=i}^{N}(-1)^{j-i}\frac{(m-i)!}{(j-i)!(m-j)!}\frac{(n-iS)!}{(S!)^{j-i}(n-jS)!}(m-j)^{n-jS}\\=\frac{m!n!}{i!}\sum_{j=i}^{N}(-1)^{j-i}\frac{1}{(j-i)!(m-j)!}\frac{1}{(S!)^{j}(n-jS)!}(m-j)^{n-jS}\)
发现里面的\(j\)不太好做,于是把\(j\)提到外层。
\(Ans=\sum_{i=0}^{N}w_i*F(i)=\sum_{i=0}^{N}\frac{m!n!w_i}{i!}\sum_{j=i}^{N}(-1)^{j-i}\frac{1}{(j-i)!(m-j)!}\frac{1}{(S!)^{j}(n-jS)!}(m-j)^{n-jS}\\=m!n!\sum_{j=0}^{N}\frac{(m-j)^{n-jS}}{(m-j)!(S!)^{j}(n-jS)!}\sum_{i=0}^{j}\frac{w_i}{i!}\frac{(-1)^{j-i}}{(j-i)!}\)
后面就可以\(NTT\)了,复杂度\(O(N\log_2N)\)
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int _ = 1e7+5;
const int mod = 1004535809;
int n,m,s,N,lim,len,jc[_],inv[_],a[_],b[_],rev[_],l,og[_],ans;
int fastpow(int a,int b){
int res=1;
while (b) {if (b&1) res=1ll*res*a%mod;a=1ll*a*a%mod;b>>=1;}
return res;
}
void ntt(int *P,int opt){
for (int i=0;i<len;++i) if (i<rev[i]) swap(P[i],P[rev[i]]);
for (int i=1;i<len;i<<=1){
int W=fastpow(3,(mod-1)/(i<<1));
if (opt==-1) W=fastpow(W,mod-2);
og[0]=1;
for (int j=1;j<i;++j) og[j]=1ll*og[j-1]*W%mod;
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k){
int x=P[j+k],y=1ll*og[k]*P[j+k+i]%mod;
P[j+k]=(x+y)%mod,P[j+k+i]=(x-y+mod)%mod;
}
}
if (opt==-1) for (int i=0,Inv=fastpow(len,mod-2);i<len;++i) P[i]=1ll*P[i]*Inv%mod;
}
int main(){
n=gi();m=gi();s=gi();N=min(m,n/s);lim=max(n,max(m,s));
jc[0]=1;
for (int i=1;i<=lim;++i) jc[i]=1ll*jc[i-1]*i%mod;
inv[lim]=fastpow(jc[lim],mod-2);
for (int i=lim;i;--i) inv[i-1]=1ll*inv[i]*i%mod;
for (len=1;len<=(N<<1);len<<=1) ++l;--l;
for (int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
for (int i=0;i<=N;++i) a[i]=1ll*gi()*inv[i]%mod;
for (int i=0;i<=N;++i) b[i]=i&1?mod-inv[i]:inv[i];
ntt(a,1);ntt(b,1);
for (int i=0;i<len;++i) a[i]=1ll*a[i]*b[i]%mod;
ntt(a,-1);
for (int i=0;i<=N;++i) (ans+=1ll*fastpow(m-i,n-i*s)*inv[m-i]%mod*fastpow(inv[s],i)%mod*inv[n-i*s]%mod*a[i]%mod)%=mod;
ans=1ll*jc[n]*jc[m]%mod*ans%mod;
printf("%d\n",ans);
return 0;
}
[BZOJ5306][HAOI2018]染色的更多相关文章
- [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...
- BZOJ5306 HAOI2018染色(容斥原理+NTT)
容易想到枚举恰好出现S次的颜色有几种.如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i). 于是考虑容斥,可得恰好 ...
- BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...
- [BZOJ5306][HAOI2018]染色(容斥+FFT)
https://www.cnblogs.com/zhoushuyu/p/9138251.html 注意如果一开始F(i)中内层式子中j枚举的是除前i种颜色之外还有几种出现S次的颜色,那么后面式子就会难 ...
- 【BZOJ5306】 [Haoi2018]染色
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...
- 【BZOJ5306】[HAOI2018]染色(NTT)
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- 【LG4491】[HAOI2018]染色
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...
随机推荐
- 【BZOJ】3998: [TJOI2015]弦论
[题意]给定长度为n的小写字母字符串S,求第k小子串.n<=5*10^5. 给定T,T=0时不同位置的相同子串算一个,T=1时算多个. [算法]后缀自动机 [题解]对S建立SAM,T=0则每个节 ...
- 使用Forms Authentication
using System; using System.Web; using System.Web.Security; namespace AuthTest { public class Aut ...
- React Native 与 夜神模拟器的绑定
之前一直用真机去调试, 每回更新一次都需要手动摇晃手机后才能reload JS, OMG,太麻烦了. 后来寻思模拟器网上推荐用Geny...什么的模拟器,但是那个模拟器还需要VBox一起用. 有点麻烦 ...
- Java Spring boot 企业微信点餐系统
欢迎关注我的微信公众号:"Java面试通关手册" 回复关键字" springboot "免费领取(一个有温度的微信公众号,期待与你共同进步~~~坚持原创,分享美 ...
- perl6 struct2-045 EXP
测试站点: http://www.yutian.com.cn/index.action http://www.hjxzyzz.com:8088/pfw/login.action 代码如下: use v ...
- 某团队线下赛AWD writeup&Beescms_V4.0代码审计
还是跟上篇一样.拿别人比赛的来玩一下. 0x01 预留后门 连接方式: 0x02 后台登录口SQL注入 admin/login.php 在func.php当中找到定义的check_login函数 很 ...
- python自动开发之(算法)第二十七天
1.什么是算法? 算法(Algorithm):一个计算过程,解决问题的方法 2.复习:递归 递归的两个特点:(1) 调用自身 (2)结束条件 def func1(x): print(x) func1( ...
- 处理tomcat内存溢出问题
TOMCAT起步内存溢出问题Exception in thread ""http-bio-8080"-exec-java.lang.OutOfMemoryError: P ...
- ActiveMQ-Prefetch机制和constantPendingMessageLimitStrategy
首先简要介绍一下prefetch机制.ActiveMQ通过prefetch机制来提高性能,这意味这 客户端的内存里可能会缓存一定数量的消息.缓存消息的数量由prefetch limit来控 制.当某个 ...
- slf4j中的Logger 使用占位符{} 来传入参数记录日志信息
首先要导入 slf4j包中的2个类 import org.slf4j.Logger;import org.slf4j.LoggerFactory; 再定义如下 private final static ...