hdu 3507 斜率优化
我的第一道斜率优化。
就这道题而言,写出原始的方程:
dp[i] = min{ dp[j] + (sum[i]-sum[j])2 + M | j in [0,i) }
O(n^2)的复杂度肯定超时,要么优化转移,要么重写方程。
斜率优化的思想就是减少不必要的枚举(即不枚举肯定不会成为决策点的j)。
我们考虑两个位置p<q<i
“选择q比选择p优” 当且仅当 dp[q]+(sum[i]-sum[q])2+M < dp[p]+(sum[i]-sum[p])2+M
化简右边即:
[ (dp[q]+sum2[q])-(dp[p]+sum2[p]) ] / ( sum[q]-sum[p] ) < sum[i]*2
该式可以看成两个点连线的斜率:( sum[q], dp[q]+sum2[q] ) 与 ( sum[p], dp[p]+sum2[p] ) 两点。
文字语言就是:“将每个决策位置看成一个二维坐标系下的点,对于两个决策点,后者比前者优 当且仅当 两点连线的斜率小于sum[i]*2”
这样怎么减少不必要的枚举呢?
可以发现,所有决策点一定是单调不下降的(题中可能出现权值为0,此时有可能出现斜率为正无穷,若M=0,还有可能出现重点,所以计算斜率不要用除法)

上面的B点一定是不会成为最优决策点的,反证法:
如果B成为最优决策点,那么
2*sum[i]>kab 且 2*sum[i]<kbc
而显然kab > kbc ,这样就推出了2*sum[i]>kab >kbc >2*sum[i],矛盾。
故B不可能成为最优决策点,同理,D也不行,删掉这些点后,我们剩下的图形就是一个下凸的图形了:

我们维护这样一个下凸的图形到队列中:
当要查找i位置的最优决策点时,一直删除队首的点,直到队中的第一条直线的斜率大于2*sum[i]或队中只有一个点,此时队首元素就是最优决策点。
计算完i位置后,要将i位置对应的点加入到队列中,此时会删除一些对尾的点,以保持队中点的下凸性(注意处理重合的点)。
这样,我们就利用斜率优化掉了很多不必要的枚举,将时间复杂度从O(n^2)降到了O(n)。
#include <cstdio>
#define ln(A,B) ((B)-(A))
#define maxn 500010 typedef long long lng; struct Vector {
lng x, y;
int id;
Vector(){}
Vector( lng x, lng y, int id ) : x(x), y(y), id(id) {}
Vector operator-( const Vector & b ) const { return Vector(x-b.x,y-b.y,); }
lng operator&( const Vector & b ) const {
return x*b.y-y*b.x;
}
};
typedef Vector Point; int n, m;
int cost[maxn];
lng sum[maxn];
lng dp[maxn]; int beg, end;
Point qu[maxn]; int main() {
while( ) {
if( scanf( "%d%d", &n, &m )!= ) return ; sum[] = ;
for( int i=; i<=n; i++ ) {
scanf( "%d", cost+i );
sum[i] = sum[i-]+cost[i];
} dp[] = ;
qu[beg=end=] = Point( , , ); for( int i=; i<=n; i++ ) {
while( end>beg && qu[beg+].y-qu[beg].y<=(qu[beg+].x-qu[beg].x)**sum[i] )
beg++;
int j = qu[beg].id;
dp[i] = dp[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m;
Point npt = Point( sum[i], dp[i]+sum[i]*sum[i], i );
while( end>beg && (ln(qu[end-],qu[end])&ln(qu[end-],npt))<= )
end--;
qu[++end] = npt;
}
printf( "%lld\n", dp[n] );
}
}
hdu 3507 斜率优化的更多相关文章
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- hdu 3669(斜率优化DP)
Cross the Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others) ...
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 2829 斜率优化DP Lawrence
题意:n个数之间放m个障碍,分隔成m+1段.对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小. 设: d(i, j)表示前i个数之间放j个炸弹能得到的最小值 sum(i)为前缀和,co ...
- hdu 3045 斜率优化DP
思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...
随机推荐
- 64_n3
nodejs-yamlish-0.0.5-9.fc26.noarch.rpm 11-Feb-2017 16:48 11966 nodejs-yargs-3.2.1-6.fc26.noarch.rpm ...
- python3.4.3安装allure2记录
一.安装:cmd执行命令pip install allure-pytest 二.下载allure2:2.7.0版本 https://dl.bintray.com/qameta/generic/io/q ...
- RestTemplate OR Spring Cloud Feign 上传文件
SpringBoot,通过RestTemplate 或者 Spring Cloud Feign,上传文件(支持多文件上传),服务端接口是MultipartFile接收. 将文件的字节流,放入ByteA ...
- NLP基础 成分句法分析和依存句法分析
正则匹配: .除换行符所有的 ?表示0次或者1次 *表示0次或者n次 a(bc)+表示bc至少出现1次 ^x.*g$表示字符串以x开头,g结束 |或者 http://regexr.com/ 依存句法分 ...
- web项目更改文件后缀,隐藏编程语言
从Java EE5.0开始,<servlet-mapping>标签就可以配置多个<url-pattern>.例如可以同时将urlServlet配置一下多个映射方式: <s ...
- JavaScript变量命名规则:匈牙利命名法
匈牙利命名法语法 变量名=类型+对象描述 类型指变量的类型 对象描述指对象名字全称或名字的一部分,要求有明确含义,命名要容易记忆容易理解. 提示 虽然JavaScript变量表面上没有类型,但是Jav ...
- int各种数据类型的表示范围
计算方法:1.正数部分数部分:2^(字节数*8-1)-1 2.负数部分:-(2^(字节数*8-1)+1) unsign int:正数部分*2+1
- log优化
isLoggable(Level level) 包含计算的日志记录用isLoggable判断下. debug info warn error ,一般记录error, 但是其他里面的计算还是 ...
- xpath简单应用
相对路径与绝对路径: 如果"/"处在XPath表达式开头则表示文档根元素,(表达式中间作为分隔符用以分割每一个步进表达式)如:/messages/message/subject是一 ...
- CSU 1351 Tree Counting
原题链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1351 DP题,毫无疑问.由于动态规划题目做得少.不熟悉,刚开始自己用f[i]表示用 i ...